Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 42(2): 264-279, 2022 02.
Article in English | MEDLINE | ID: mdl-34689641

ABSTRACT

Platelet-derived growth factor B (PDGFB) released from endothelial cells is indispensable for pericyte recruitment during angiogenesis in embryonic and postnatal organ growth. Constitutive genetic loss-of-function of PDGFB leads to pericyte hypoplasia and the formation of a sparse, dilated and venous-shifted brain microvasculature with dysfunctional blood-brain barrier (BBB) in mice, as well as the formation of microvascular calcification in both mice and humans. Endothelial PDGFB is also expressed in the adult quiescent microvasculature, but here its importance is unknown. We show that deletion of Pdgfb in endothelial cells in 2-months-old mice causes a slowly progressing pericyte loss leading, at 12-18 months of age, to ≈50% decrease in endothelial:pericyte cell ratio, ≈60% decrease in pericyte longitudinal capillary coverage and >70% decrease in pericyte marker expression. Similar to constitutive loss of Pdgfb, this correlates with increased BBB permeability. However, in contrast to the constitutive loss of Pdgfb, adult-induced loss does not lead to vessel dilation, impaired arterio-venous zonation or the formation of microvascular calcifications. We conclude that PDFGB expression in quiescent adult microvascular brain endothelium is critical for the maintenance of pericyte coverage and normal BBB function, but that microvessel dilation, rarefaction, arterio-venous skewing and calcification reflect developmental roles of PDGFB.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability , Endothelium, Vascular/metabolism , Lymphokines/metabolism , Pericytes/metabolism , Platelet-Derived Growth Factor/metabolism , Vascular Calcification/metabolism , Animals , Blood-Brain Barrier/pathology , Endothelium, Vascular/pathology , Gene Expression Regulation , Lymphokines/genetics , Mice , Mice, Knockout , Pericytes/pathology , Platelet-Derived Growth Factor/genetics , Vascular Calcification/genetics , Vascular Calcification/pathology
2.
Circ Res ; 128(4): e46-e62, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33375813

ABSTRACT

RATIONALE: Pericytes are capillary mural cells playing a role in stabilizing newly formed blood vessels during development and tissue repair. Loss of pericytes has been described in several brain disorders, and genetically induced pericyte deficiency in the brain leads to increased macromolecular leakage across the blood-brain barrier (BBB). However, the molecular details of the endothelial response to pericyte deficiency remain elusive. OBJECTIVE: To map the transcriptional changes in brain endothelial cells resulting from lack of pericyte contact at single-cell level and to correlate them with regional heterogeneities in BBB function and vascular phenotype. METHODS AND RESULTS: We reveal transcriptional, morphological, and functional consequences of pericyte absence for brain endothelial cells using a combination of methodologies, including single-cell RNA sequencing, tracer analyses, and immunofluorescent detection of protein expression in pericyte-deficient adult Pdgfbret/ret mice. We find that endothelial cells without pericyte contact retain a general BBB-specific gene expression profile, however, they acquire a venous-shifted molecular pattern and become transformed regarding the expression of numerous growth factors and regulatory proteins. Adult Pdgfbret/ret brains display ongoing angiogenic sprouting without concomitant cell proliferation providing unique insights into the endothelial tip cell transcriptome. We also reveal heterogeneous modes of pericyte-deficient BBB impairment, where hotspot leakage sites display arteriolar-shifted identity and pinpoint putative BBB regulators. By testing the causal involvement of some of these using reverse genetics, we uncover a reinforcing role for angiopoietin 2 at the BBB. CONCLUSIONS: By elucidating the complexity of endothelial response to pericyte deficiency at cellular resolution, our study provides insight into the importance of brain pericytes for endothelial arterio-venous zonation, angiogenic quiescence, and a limited set of BBB functions. The BBB-reinforcing role of ANGPT2 (angiopoietin 2) is paradoxical given its wider role as TIE2 (TEK receptor tyrosine kinase) receptor antagonist and may suggest a unique and context-dependent function of ANGPT2 in the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Pericytes/cytology , Animals , Blood-Brain Barrier/cytology , Blood-Brain Barrier/pathology , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/physiology , Lymphokines/deficiency , Lymphokines/genetics , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic , Pericytes/metabolism , Pericytes/pathology , Platelet-Derived Growth Factor/deficiency , Platelet-Derived Growth Factor/genetics , Single-Cell Analysis , Transcriptome
3.
Brain Pathol ; 30(3): 446-464, 2020 05.
Article in English | MEDLINE | ID: mdl-31561281

ABSTRACT

Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfbret/ret and Slc20a2-/- mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfbret/ret mice were large, solitary and smooth surfaced, the nodules in Slc20a2-/- mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfbret/ret mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2-/- mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.


Subject(s)
Astrocytes/metabolism , Brain Diseases/metabolism , Calcinosis/metabolism , Extracellular Matrix/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Animals , Astrocytes/pathology , Brain Diseases/genetics , Brain Diseases/pathology , Calcinosis/genetics , Calcinosis/pathology , Disease Models, Animal , Disease Progression , Extracellular Matrix/pathology , Female , Male , Mice , Mice, Transgenic , Microglia/pathology , Mutation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
4.
Brain ; 142(4): 885-902, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30805583

ABSTRACT

Brain calcifications are commonly detected in aged individuals and accompany numerous brain diseases, but their functional importance is not understood. In cases of primary familial brain calcification, an autosomally inherited neuropsychiatric disorder, the presence of bilateral brain calcifications in the absence of secondary causes of brain calcification is a diagnostic criterion. To date, mutations in five genes including solute carrier 20 member 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), myogenesis regulating glycosidase (MYORG), platelet-derived growth factor B (PDGFB) and platelet-derived growth factor receptor ß (PDGFRB), are considered causal. Previously, we have reported that mutations in PDGFB in humans are associated with primary familial brain calcification, and mice hypomorphic for PDGFB (Pdgfbret/ret) present with brain vessel calcifications in the deep regions of the brain that increase with age, mimicking the pathology observed in human mutation carriers. In this study, we characterize the cellular environment surrounding calcifications in Pdgfbret/ret animals and show that cells around vessel-associated calcifications express markers for osteoblasts, osteoclasts and osteocytes, and that bone matrix proteins are present in vessel-associated calcifications. Additionally, we also demonstrate the osteogenic environment around brain calcifications in genetically confirmed primary familial brain calcification cases. We show that calcifications cause oxidative stress in astrocytes and evoke expression of neurotoxic astrocyte markers. Similar to previously reported human primary familial brain calcification cases, we describe high interindividual variation in calcification load in Pdgfbret/ret animals, as assessed by ex vivo and in vivo quantification of calcifications. We also report that serum of Pdgfbret/ret animals does not differ in calcification propensity from control animals and that vessel calcification occurs only in the brains of Pdgfbret/ret animals. Notably, ossification of vessels and astrocytic neurotoxic response is associated with specific behavioural and cognitive alterations, some of which are associated with primary familial brain calcification in a subset of patients.


Subject(s)
Astrocytes/metabolism , Ossification, Heterotopic/pathology , Proto-Oncogene Proteins c-sis/metabolism , Aged , Animals , Brain/pathology , Brain Diseases/genetics , Calcinosis/pathology , Female , Humans , Male , Mice , Mutation , Osteogenesis/physiology , Oxidative Stress , Pedigree , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/physiology , Receptor, Platelet-Derived Growth Factor beta/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Xenotropic and Polytropic Retrovirus Receptor
5.
Sci Rep ; 8(1): 17462, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30498224

ABSTRACT

Diabetes mellitus is associated with cognitive impairment and various central nervous system pathologies such as stroke, vascular dementia, or Alzheimer's disease. The exact pathophysiology of these conditions is poorly understood. Recent reports suggest that hyperglycemia causes cerebral microcirculation pathology and blood-brain barrier (BBB) dysfunction and leakage. The majority of these reports, however, are based on methods including in vitro BBB modeling or streptozotocin-induced diabetes in rodents, opening questions regarding the translation of the in vitro findings to the in vivo situation, and possible direct effects of streptozotocin on the brain vasculature. Here we used a genetic mouse model of hyperglycemia (Ins2AKITA) to address whether prolonged systemic hyperglycemia induces BBB dysfunction and leakage. We applied a variety of methodologies to carefully evaluate BBB function and cellular integrity in vivo, including the quantification and visualization of specific tracers and evaluation of transcriptional and morphological changes in the BBB and its supporting cellular components. These experiments did neither reveal altered BBB permeability nor morphological changes of the brain vasculature in hyperglycemic mice. We conclude that prolonged hyperglycemia does not lead to BBB dysfunction, and thus the cognitive impairment observed in diabetes may have other causes.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability , Hyperglycemia/metabolism , Hyperglycemia/pathology , Pericytes/metabolism , Pericytes/pathology , Animals , Cell Count , Disease Management , Disease Models, Animal , Gene Expression Profiling , Hyperglycemia/genetics , Immunohistochemistry , Male , Mice , Mice, Knockout , Microglia/metabolism
6.
Sci Data ; 5: 180160, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30129931

ABSTRACT

Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436 single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub)types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.


Subject(s)
Blood Vessels , Brain/blood supply , Lung/blood supply , Transcriptome , Animals , Blood Vessels/cytology , Blood Vessels/physiology , Databases, Factual , Endothelial Cells/physiology , Mice , Myocytes, Smooth Muscle/physiology , Pericytes/physiology , Sequence Analysis, RNA , Single-Cell Analysis
7.
Nature ; 560(7716): E3, 2018 08.
Article in English | MEDLINE | ID: mdl-29925939

ABSTRACT

In Fig. 1b of this Article, 'Csf1r' was misspelt 'Csfr1'. In addition, in Extended Data Fig. 11b, owing to an error during figure formatting, the genes listed in the first column shifted down three rows below the first gene on the list, causing a mismatch between the gene names and their characteristics. These errors have been corrected online, and the original Extended Data Fig. 11b is provided as Supplementary Information to the accompanying Amendment.

8.
Nature ; 554(7693): 475-480, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29443965

ABSTRACT

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.


Subject(s)
Blood Vessels/cytology , Brain/blood supply , Brain/cytology , Endothelial Cells/classification , Animals , Arteries/cytology , Arterioles/cytology , Capillaries/cytology , Female , Fibroblasts/classification , Male , Mice , Myocytes, Smooth Muscle/classification , Organ Specificity , Pericytes/classification , Single-Cell Analysis , Transcriptome , Veins/cytology
9.
PLoS One ; 10(11): e0143407, 2015.
Article in English | MEDLINE | ID: mdl-26599395

ABSTRACT

Primary Familial Brain Calcification (PFBC), a neurodegenerative disease characterized by progressive pericapillary calcifications, has recently been linked to heterozygous mutations in PDGFB and PDGFRB genes. Here, we functionally analyzed several of these mutations in vitro. All six analyzed PDGFB mutations led to complete loss of PDGF-B function either through abolished protein synthesis or through defective binding and/or stimulation of PDGF-Rß. The three analyzed PDGFRB mutations had more diverse consequences. Whereas PDGF-Rß autophosphorylation was almost totally abolished in the PDGFRB L658P mutation, the two sporadic PDGFRB mutations R987W and E1071V caused reductions in protein levels and specific changes in the intensity and kinetics of PLCγ activation, respectively. Since at least some of the PDGFB mutations were predicted to act through haploinsufficiency, we explored the consequences of reduced Pdgfb or Pdgfrb transcript and protein levels in mice. Heterozygous Pdgfb or Pdgfrb knockouts, as well as double Pdgfb+/-;Pdgfrb+/- mice did not develop brain calcification, nor did Pdgfrbredeye/redeye mice, which show a 90% reduction of PDGFRß protein levels. In contrast, Pdgfbret/ret mice, which have altered tissue distribution of PDGF-B protein due to loss of a proteoglycan binding motif, developed brain calcifications. We also determined pericyte coverage in calcification-prone and non-calcification-prone brain regions in Pdgfbret/ret mice. Surprisingly and contrary to our hypothesis, we found that the calcification-prone brain regions in Pdgfbret/ret mice model had a higher pericyte coverage and a more intact blood-brain barrier (BBB) compared to non-calcification-prone brain regions. While our findings provide clear evidence that loss-of-function mutations in PDGFB or PDGFRB cause PFBC, they also demonstrate species differences in the threshold levels of PDGF-B/PDGF-Rß signaling that protect against small-vessel calcification in the brain. They further implicate region-specific susceptibility factor(s) in PFBC pathogenesis that are distinct from pericyte and BBB deficiency.


Subject(s)
Brain Diseases/genetics , Calcinosis/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Proto-Oncogene Proteins c-sis/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , Animals , Blood-Brain Barrier/pathology , Cell Surface Extensions/drug effects , Cell Surface Extensions/metabolism , Culture Media, Conditioned/pharmacology , HEK293 Cells , Haploinsufficiency/genetics , Humans , Mice , Pericytes/drug effects , Pericytes/metabolism , Pericytes/pathology , Phosphorylation/drug effects , Signal Transduction/drug effects , Transfection , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...