Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 7(17)2022 09 08.
Article in English | MEDLINE | ID: mdl-35980743

ABSTRACT

Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.


Subject(s)
Brain Neoplasms , Melanoma , Animals , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Chemokine CCL2/metabolism , Melanoma/drug therapy , Melanoma/pathology , Mice , Receptors, CCR2/metabolism , Tumor Microenvironment
2.
Nat Biotechnol ; 40(8): 1241-1249, 2022 08.
Article in English | MEDLINE | ID: mdl-35681059

ABSTRACT

Transplantation of B cells engineered ex vivo to secrete broadly neutralizing antibodies (bNAbs) has shown efficacy in disease models. However, clinical translation of this approach would require specialized medical centers, technically demanding protocols and major histocompatibility complex compatibility of donor cells and recipients. Here we report in vivo B cell engineering using two adeno-associated viral vectors, with one coding for Staphylococcus aureus Cas9 (saCas9) and the other for 3BNC117, an anti-HIV bNAb. After intravenously injecting the vectors into mice, we observe successful editing of B cells leading to memory retention and bNAb secretion at neutralizing titers of up to 6.8 µg ml-1. We observed minimal clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 off-target cleavage as detected by unbiased CHANGE-sequencing analysis, whereas on-target cleavage in undesired tissues is reduced by expressing saCas9 from a B cell-specific promoter. In vivo B cell engineering to express therapeutic antibodies is a safe, potent and scalable method, which may be applicable not only to infectious diseases but also in the treatment of noncommunicable conditions, such as cancer and autoimmune disease.


Subject(s)
HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing/genetics , B-Lymphocytes , Broadly Neutralizing Antibodies , HIV Antibodies/genetics , HIV Infections/therapy , Mice , Staphylococcus aureus
3.
Nat Biotechnol ; 40(12): 1807-1813, 2022 12.
Article in English | MEDLINE | ID: mdl-35773341

ABSTRACT

Multiple clinical trials of allogeneic T cell therapy use site-specific nucleases to disrupt T cell receptor (TCR) and other genes1-6. In this study, using single-cell RNA sequencing, we investigated genome editing outcomes in primary human T cells transfected with CRISPR-Cas9 and guide RNAs targeting genes for TCR chains and programmed cell death protein 1. Four days after transfection, we found a loss of chromosome 14, harboring the TCRα locus, in up to 9% of the cells and a chromosome 14 gain in up to 1.4% of the cells. Chromosome 7, harboring the TCRß locus, was truncated in 9.9% of the cells. Aberrations were validated using fluorescence in situ hybridization and digital droplet PCR. Aneuploidy was associated with reduced proliferation, induced p53 activation and cell death. However, at 11 days after transfection, 0.9% of T cells still had a chromosome 14 loss. Aneuploidy and chromosomal truncations are, thus, frequent outcomes of CRISPR-Cas9 cleavage that should be monitored and minimized in clinical protocols.


Subject(s)
CRISPR-Cas Systems , T-Lymphocytes , Humans , CRISPR-Cas Systems/genetics , In Situ Hybridization, Fluorescence , Gene Editing/methods , Receptors, Antigen, T-Cell/genetics , Aneuploidy
4.
Nucleic Acids Res ; 48(22): 12804-12816, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33270859

ABSTRACT

HK022 coliphage site-specific recombinase Integrase (Int) can catalyze integrative site-specific recombination and recombinase-mediated cassette exchange (RMCE) reactions in mammalian cell cultures. Owing to the promiscuity of the 7 bp overlap sequence in its att sites, active 'attB' sites flanking human deleterious mutations were previously identified that may serve as substrates for RMCE reactions for future potential gene therapy. However, the wild type Int proved inefficient in catalyzing such RMCE reactions. To address this low efficiency, variants of Int were constructed and examined by integrative site-specific recombination and RMCE assays in human cells using native 'attB' sites. As a proof of concept, various Int derivatives have demonstrated successful RMCE reactions using a pair of native 'attB' sites that were inserted as a substrate into the human genome. Moreover, successful RMCE reactions were demonstrated in native locations of the human CTNS and DMD genes whose mutations are responsible for Cystinosis and Duchene Muscular Dystrophy diseases, respectively. This work provides a steppingstone for potential downstream therapeutic applications.


Subject(s)
Bacteriophage HK022/genetics , Genetic Therapy , Integrases/genetics , Recombination, Genetic/genetics , Bacteriophage HK022/enzymology , DNA Nucleotidyltransferases/genetics , Genome, Human/genetics , Humans
5.
Nat Commun ; 11(1): 5851, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203857

ABSTRACT

HIV viremia can be controlled by chronic antiretroviral therapy. As a potentially single-shot alternative, B cells engineered by CRISPR/Cas9 to express anti-HIV broadly neutralizing antibodies (bNAbs) are capable of secreting high antibody titers. Here, we show that, upon immunization of mice, adoptively transferred engineered B cells home to germinal centers (GC) where they predominate over the endogenous response and differentiate into memory and plasma cells while undergoing class switch recombination (CSR). Immunization with a high affinity antigen increases accumulation in GCs and CSR rates. Boost immunization increases the rate of engineered B cells in GCs and antibody secretion, indicating memory retention. Finally, antibody sequences of engineered B cells in the spleen show patterns of clonal selection. Therefore, B cells can be engineered into what could be a living and evolving drug.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/genetics , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , HIV Antibodies/genetics , Immunologic Memory/genetics , AIDS Vaccines/genetics , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , B-Lymphocytes/physiology , B-Lymphocytes/transplantation , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/immunology , Genetic Engineering/methods , HIV Antibodies/blood , HIV Antibodies/immunology , Immunization , Immunoglobulin Isotypes/genetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...