Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
EBioMedicine ; 86: 104349, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36371986

ABSTRACT

BACKGROUND: The application of cold exposure has emerged as an approach to enhance whole-body lipid catabolism. The global effect of cold exposure on the lipidome in humans has been reported with mixed results depending on intensity and duration of cold. METHODS: This secondary study was based on data from a previous randomized cross-over trial (ClinicalTrials.gov ID: NCT03012113). We performed sequential lipidomic profiling in serum during 120 min cold exposure of human volunteers. Next, the intracellular lipolysis was blocked in mice (eighteen 10-week-old male wild-type mice C57BL/6J) using a small-molecule inhibitor of adipose triglyceride lipase (ATGL; Atglistatin), and mice were exposed to cold for a similar duration. The quantitative lipidomic profiling was assessed in-depth using the Lipidyzer platform. FINDINGS: In humans, cold exposure gradually increased circulating free fatty acids reaching a maximum at 60 min, and transiently decreased total triacylglycerols (TAGs) only at 30 min. A broad range of TAG species was initially decreased, in particular unsaturated and polyunsaturated TAG species with ≤5 double bonds, while after 120 min a significant increase was observed for polyunsaturated TAG species with ≥6 double bonds in humans. The mechanistic study in mice revealed that the cold-induced increase in polyunsaturated TAGs was largely prevented by blocking adipose triglyceride lipase. INTERPRETATION: We interpret these findings as that cold exposure feeds thermogenic tissues with TAG-derived fatty acids for combustion, resulting in a decrease of circulating TAG species, followed by increased hepatic production of polyunsaturated TAG species induced by liberation of free fatty acids stemming from adipose tissue. FUNDING: This work was supported by the Netherlands CardioVascular Research Initiative: 'the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organisation for Health Research and Development and the Royal Netherlands Academy of Sciences' [CVON2017-20 GENIUS-II] to Patrick C.N. Rensen. Borja Martinez-Tellez is supported by individual postdoctoral grant from the Fundación Alfonso Martin Escudero and by a Maria Zambrano fellowship by the Ministerio de Universidades y la Unión Europea - NextGenerationEU (RR_C_2021_04). Lucas Jurado-Fasoli was supported by an individual pre-doctoral grant from the Spanish Ministry of Education (FPU19/01609) and with an Albert Renold Travel Fellowship from the European Foundation for the Study of Diabetes (EFSD). Martin Giera was partially supported by NWO XOmics project #184.034.019.


Subject(s)
Cold Temperature , Fatty Acids, Nonesterified , Lipolysis , Triglycerides , Animals , Humans , Male , Mice , Adipose Tissue/metabolism , Cross-Over Studies , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Lipase/metabolism , Mice, Inbred C57BL , Triglycerides/blood , Triglycerides/metabolism
2.
J Clin Lipidol ; 16(4): 472-482, 2022.
Article in English | MEDLINE | ID: mdl-35568684

ABSTRACT

BACKGROUND: Mutations in genes encoding lipoprotein lipase (LPL) or its regulators can cause severe hypertriglyceridemia (HTG). Thus far, the effect of genetic HTG on the lipid profile has been mainly determined via conventional techniques. OBJECTIVE: To show detailed differences in the (apo)lipoprotein profile of patients with genetic HTG by combining LC-MS and NMR techniques. METHODS: Fasted serum from 7 patients with genetic HTG and 10 normolipidemic controls was used to measure the concentration of a spectrum of apolipoproteins by LC-MS, and to estimate the concentration and size of lipoprotein subclasses and class-specific lipid composition using NMR spectroscopy. RESULTS: Patients with genetic HTG compared to normolipidemic controls had higher levels of apoB48 (fold change [FC] 11.3, P<0.001), apoC-I (FC 1.5, P<0.001), apoC-II (FC 4.3, P=0.007), apoC-III (FC 3.4, P<0.001), and apoE (FC 4.3, P<0.001), without altered apoB100. In addition, patients with genetic HTG had higher concentrations of TG-rich lipoproteins (i.e., chylomicrons and very low-density lipoproteins [VLDL]; FC 3.0, P<0.001), but lower LDL (FC 0.4, P=0.001), of which medium and small-sized LDL particles appeared even absent. While the correlation coefficient between NMR and enzymatic analysis in normolipidemic controls was high, it was considerably reduced in patients with genetic HTG. CONCLUSION: The lipoprotein profile of patients with genetic HTG is predominated with large lipoproteins (i.e., chylomicrons, VLDL), explaining high levels of apoC-I, apoC-II, apoC-III and apoE, whereas small atherogenic LDL particles are absent. The presence of chylomicrons in patients with HTG weakens the accuracy of the NMR-based model as it was designed for normolipidemic fasted individuals.


Subject(s)
Hyperlipidemias , Hypertriglyceridemia , Apolipoprotein C-III/genetics , Apolipoproteins , Apolipoproteins E/genetics , Chromatography, Liquid , Chylomicrons , Humans , Hypertriglyceridemia/genetics , Lipoproteins, VLDL , Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry , Triglycerides
3.
Diabetes Obes Metab ; 22(11): 2032-2044, 2020 11.
Article in English | MEDLINE | ID: mdl-32558052

ABSTRACT

AIM: To compare the effects of cold exposure and the ß3-adrenergic receptor agonist mirabegron on plasma lipids, energy expenditure and brown adipose tissue (BAT) activity in South Asians versus Europids. MATERIALS AND METHODS: Ten lean Dutch South Asian (aged 18-30 years; body mass index [BMI] 18-25 kg/m2 ) and 10 age- and BMI-matched Europid men participated in a randomized, double-blinded, cross-over study consisting of three interventions: short-term (~ 2 hours) cold exposure, mirabegron (200 mg one dose p.o.) and placebo. Before and after each intervention, we performed lipidomic analysis in serum, assessed resting energy expenditure (REE) and skin temperature, and measured BAT fat fraction by magnetic resonance imaging. RESULTS: In both ethnicities, cold exposure increased the levels of several serum lipid species, whereas mirabegron only increased free fatty acids. Cold exposure increased lipid oxidation in both ethnicities, while mirabegron increased lipid oxidation in Europids only. Cold exposure and mirabegron enhanced supraclavicular skin temperature in both ethnicities. Cold exposure decreased BAT fat fraction in both ethnicities. After the combination of data from both ethnicities, mirabegron decreased BAT fat fraction compared with placebo. CONCLUSIONS: In South Asians and Europids, cold exposure and mirabegron induced beneficial metabolic effects. When combining both ethnicities, cold exposure and mirabegron increased REE and lipid oxidation, coinciding with a higher supraclavicular skin temperature and lower BAT fat fraction.


Subject(s)
Adipose Tissue, Brown , Energy Metabolism , Acetanilides , Adipose Tissue, Brown/metabolism , Asian People , Cold Temperature , Cross-Over Studies , Humans , Male , Thermogenesis , Thiazoles
4.
Metabolism ; 106: 154167, 2020 05.
Article in English | MEDLINE | ID: mdl-31982480

ABSTRACT

AIMS/HYPOTHESIS: Brown adipose tissue (BAT) improves energy metabolism by combusting glucose and lipids into heat. Agonism of the glucagon-like peptide-1 receptor (GLP-1R) within the central nervous system activates BAT in mice. Moreover, in patients with type 2 diabetes, GLP-1R agonism lowers body weight and improves glucose and lipid levels, possibly involving BAT activation. Interestingly, people from South Asian descent are prone to develop cardiometabolic disease. We studied the effect of GLP-1R agonism on BAT in humans, specifically in South Asians and Europids without obesity or type 2 diabetes. METHODS: Twelve Dutch South Asian and 12 age- and BMI-matched Europid nondiabetic men received 12 weeks extended-release exenatide (Bydureon) in this single-arm prospective study. Before and after treatment, BAT was visualized by a cold-induced [18F]FDG-PET/CT scan and a thermoneutral MRI scan, and resting energy expenditure (REE), substrate oxidation, body composition and fasting plasma glucose and serum lipids were determined. Appetite was rated using a visual analogue scale. RESULTS: Since the effect of exenatide on metabolic parameters did not evidently differ between ethnicities, data of all participants were pooled. Exenatide decreased body weight (-1.5 ±â€¯0.4 kg, p < 0.01), without affecting REE or substrate oxidation, and transiently decreased appetite ratings during the first weeks. Exenatide also lowered triglycerides (-15%, p < 0.05) and total cholesterol (-5%, p < 0.05), and tended to lower glucose levels. Notably, exenatide increased BAT metabolic volume (+28%, p < 0.05) and mean standardized uptake value (+11%, p < 0.05) ([18F]FDG-PET/CT), without affecting supraclavicular adipose tissue fat fraction (MRI). CONCLUSIONS/INTERPRETATION: We show for the first time that GLP-1R agonism increases [18F]FDG uptake by BAT in South Asian and Europid men without obesity or type 2 diabetes. TRIAL REGISTRY: Clinicaltrials.gov NCT03002675.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Energy Metabolism/drug effects , Exenatide/pharmacology , Fluorodeoxyglucose F18/pharmacokinetics , Adipose Tissue, Brown/diagnostic imaging , Adult , Body Composition/drug effects , Body Weight/drug effects , Exenatide/therapeutic use , Humans , Male , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Positron Emission Tomography Computed Tomography , Rest/physiology , Young Adult
5.
Diabetes Metab J ; 44(2): 326-335, 2020 04.
Article in English | MEDLINE | ID: mdl-31701693

ABSTRACT

BACKGROUND: South Asians generally have an unfavourable metabolic phenotype compared with white Caucasians, including central obesity and insulin resistance. The Wnt protein family interacts with insulin signaling, and impaired Wnt signaling is associated with adiposity and type 2 diabetes mellitus. We aimed to investigate Wnt signaling in relation to insulin signaling in South Asians compared with white Caucasians. METHODS: Ten Dutch South Asian men with prediabetes and overweight or obesity and 10 matched Dutch white Caucasians were included. Blood samples were assayed for the Wnt inhibitor sclerostin. Subcutaneous white adipose tissue (WAT) and skeletal muscle biopsies were assayed for Wnt and insulin signaling gene expression with quantitative reverse transcription polymerase chain reaction (Clinicaltrials.gov NCT02291458). RESULTS: Plasma sclerostin was markedly higher in South Asians compared with white Caucasians (+65%, P<0.01). Additionally, expression of multiple Wnt signaling genes and key insulin signaling genes were lower in WAT in South Asians compared with white Caucasians. Moreover, in WAT in both ethnicities, Wnt signaling gene expression strongly positively correlated with insulin signaling gene expression. In skeletal muscle, WNT10B expression in South Asians was lower, but expression of other Wnt signaling and insulin signaling genes was comparable between ethnicities. Wnt and insulin signaling gene expression also positively correlated in skeletal muscle, albeit less pronounced. CONCLUSION: South Asian men with overweight or obesity and prediabetes have higher plasma sclerostin and lower Wnt signaling gene expression in WAT compared with white Caucasians. We interpret that reduced Wnt signaling could contribute to impaired insulin signaling in South Asians.


Subject(s)
Adaptor Proteins, Signal Transducing/blood , Adipose Tissue, White/metabolism , Prediabetic State/ethnology , Wnt Signaling Pathway/genetics , Adipose Tissue, White/pathology , Adiposity/ethnology , Adiposity/genetics , Adult , Asian People/genetics , Biopsy , Case-Control Studies , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression/genetics , Humans , Insulin/genetics , Insulin Resistance/ethnology , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Netherlands/ethnology , Obesity/ethnology , Obesity/genetics , Prediabetic State/blood , White People/genetics
6.
J Clin Lipidol ; 13(6): 910-919.e2, 2019.
Article in English | MEDLINE | ID: mdl-31753722

ABSTRACT

BACKGROUND: South Asians are more prone to develop atherosclerotic cardiovascular disease (ASCVD) compared with white Caucasians, which is not fully explained by classical risk factors. We recently reported that the presence of aggregation-prone low-density lipoprotein (LDL) in the circulation is associated with increased ASCVD mortality. OBJECTIVE: We hypothesized that LDL of South Asians is more prone to aggregate, which may be explained by differences in their LDL lipid composition. METHODS: In this cross-sectional hypothesis-generating study, LDL was isolated from plasma of healthy South Asians (n = 12) and age- and BMI-matched white Caucasians (n = 12), and its aggregation susceptibility and lipid composition were analyzed. RESULTS: LDL from South Asians was markedly more prone to aggregate compared with white Caucasians. Among all measured lipids, sphingomyelin 24:0 and triacylglycerol 56:8 showed the highest positive correlation with LDL aggregation. In addition, LDL from South Asians was enriched in arachidonic acid containing phosphatidylcholine 38:4 and had less phosphatidylcholines and cholesteryl esters containing monounsaturated fatty acids. Interestingly, body fat percentage, which was higher in South Asians (+26%), positively correlated with LDL aggregation and highly positively correlated with triacylglycerol 56:8, sphingomyelin 24:0, and total sphingomyelin. CONCLUSIONS: LDL aggregation susceptibility is higher in healthy young South Asians compared with white Caucasians. This may be partly explained by the higher body fat percentage of South Asians, leading to sphingomyelin enrichment of LDL. We anticipate that the presence of sphingomyelin-rich, aggregation-prone LDL particles in young South Asians may increase LDL accumulation in the arterial wall and thereby contribute to their increased risk of developing ASCVD later in life.


Subject(s)
Arteriosclerosis/blood , Lipoproteins, LDL/blood , Lipoproteins, LDL/metabolism , Triglycerides/blood , Adolescent , Adult , Animals , Arteriosclerosis/metabolism , Asian People , CHO Cells , Cricetulus , Cross-Sectional Studies , Humans , Male , Mass Spectrometry , Sphingomyelin Phosphodiesterase/therapeutic use , Triglycerides/metabolism , White People , Young Adult
7.
J Clin Med ; 8(8)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416197

ABSTRACT

Angiopoietin-like proteins (ANGPTLs) regulate triglyceride (TG)-rich lipoprotein distribution via inhibiting TG hydrolysis by lipoprotein lipase in metabolic tissues. Brown adipose tissue combusts TG-derived fatty acids to enhance thermogenesis during cold exposure. It has been shown that cold exposure regulates ANGPTL4, but its effects on ANGPTL3 and ANGPTL8 in humans have not been elucidated. We therefore investigated the effect of short-term cooling on plasma ANGPTL3 and ANGPTL8, besides ANGPTL4. Twenty-four young, healthy, lean men and 20 middle-aged men with overweight and prediabetes were subjected to 2 h of mild cooling just above their individual shivering threshold. Before and after short-term cooling, plasma ANGPTL3, ANGPTL4, and ANGPTL8 were determined by ELISA. In young, healthy, lean men, short-term cooling increased plasma ANGPTL3 (+16%, p < 0.05), ANGPTL4 (+15%, p < 0.05), and ANGPTL8 levels (+28%, p < 0.001). In middle-aged men with overweight and prediabetes, short-term cooling only significantly increased plasma ANGPTL4 levels (+15%, p < 0.05), but not ANGPTL3 (230 ± 9 vs. 251 ± 13 ng/mL, p = 0.051) or ANGPTL8 (2.2 ± 0.5 vs. 2.3 ± 0.5 µg/mL, p = 0.46). We show that short-term cooling increases plasma ANGPTL4 levels in men, regardless of age and metabolic status, but only overtly increases ANGPTL3 and ANGPTL8 levels in young, healthy, lean men.

8.
Article in English | MEDLINE | ID: mdl-31998233

ABSTRACT

Aim: Magnetic resonance imaging (MRI) is increasingly being used to evaluate brown adipose tissue (BAT) function. Reports on the extent and direction of cold-induced changes in MRI fat fraction and estimated BAT volume vary between studies. Here, we aimed to explore the effect of different fat fraction threshold ranges on outcomes measured by MRI. Moreover, we aimed to investigate the effect of cold exposure on estimated BAT mass and energy content. Methods: The effects of cold exposure at different fat fraction thresholding levels were analyzed in the supraclavicular adipose depot of nine adult males. MRI data were reconstructed, co-registered and analyzed in two ways. First, we analyzed cold-induced changes in fat fraction, T2* relaxation time, volume, mass, and energy of the entire supraclavicular adipose depot at different fat fraction threshold levels. As a control, we assessed fat fraction differences of deltoid subcutaneous adipose tissue (SAT). Second, a local analysis was performed to study changes in fat fraction and T2* on a voxel-level. Thermoneutral and post-cooling data were compared using paired-sample t-tests (p < 0.05). Results: Global analysis unveiled that the largest cold-induced change in fat fraction occurred within a thermoneutral fat fraction range of 30-100% (-3.5 ± 1.9%), without changing the estimated BAT volume. However, the largest cold-induced changes in estimated BAT volume were observed when applying a thermoneutral fat fraction range of 70-100% (-3.8 ± 2.6%). No changes were observed for the deltoid SAT fat fractions. Tissue energy content was reduced from 126 ± 33 to 121 ± 30 kcal, when using a 30-100% fat fraction range, and also depended on different fat fraction thresholds. Voxel-wise analysis showed that while cold exposure changed the fat fraction across nearly all thermoneutral fat fractions, decreases were most pronounced at high thermoneutral fat fractions. Conclusion: Cold-induced changes in fat fraction occurred over the entire range of thermoneutral fat fractions, and were especially found in lipid-rich regions of the supraclavicular adipose depot. Due to the variability in response between lipid-rich and lipid-poor regions, care should be taken when applying fat fraction thresholds for MRI BAT analysis.

9.
Diabetologia ; 62(1): 112-122, 2019 01.
Article in English | MEDLINE | ID: mdl-30377712

ABSTRACT

AIMS/HYPOTHESIS: Individuals of South Asian origin are at increased risk of developing type 2 diabetes mellitus and associated comorbidities compared with Europids. Disturbances in energy metabolism may contribute to this increased risk. Skeletal muscle and possibly also brown adipose tissue (BAT) are involved in human energy metabolism and nitric oxide (NO) is suggested to play a pivotal role in regulating mitochondrial biogenesis in both tissues. We aimed to investigate the effects of 6 weeks of supplementation with L-arginine, a precursor of NO, on energy metabolism by BAT and skeletal muscle, as well as glucose metabolism in South Asian men compared with men of European descent. METHODS: We included ten Dutch South Asian men (age 46.5 ± 2.8 years, BMI 30.1 ± 1.1 kg/m2) and ten Dutch men of European descent, that were similar with respect to age and BMI, with prediabetes (fasting plasma glucose level 5.6-6.9 mmol/l or plasma glucose levels 2 h after an OGTT 7.8-11.1 mmol/l). Participants took either L-arginine (9 g/day) or placebo orally for 6 weeks in a randomised double-blind crossover study. Participants were eligible to participate in the study when they were aged between 40 and 55 years, had a BMI between 25 and 35 kg/m2 and did not have type 2 diabetes. Furthermore, ethnicity was defined as having four grandparents of South Asian or white European origin, respectively. Blinding of treatment was done by the pharmacy (Hankintatukku) and an independent researcher from Leiden University Medical Center randomly assigned treatments by providing a coded list. All people involved in the study as well as participants were blinded to group assignment. After each intervention, glucose tolerance was determined by OGTT and basal metabolic rate (BMR) was determined by indirect calorimetry; BAT activity was assessed by cold-induced [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography-computed tomography scanning. In addition, a fasting skeletal muscle biopsy was taken and analysed ex vivo for respiratory capacity using a multisubstrate protocol. The primary study endpoint was the effect of L-arginine on BAT volume and activity. RESULTS: L-Arginine did not affect BMR, [18F]FDG uptake by BAT or skeletal muscle respiration in either ethnicity. During OGTT, L-arginine lowered plasma glucose concentrations (AUC0-2 h - 9%, p < 0.01), insulin excursion (AUC0-2 h - 26%, p < 0.05) and peak insulin concentrations (-26%, p < 0.05) in Europid but not South Asian men. This coincided with enhanced cold-induced glucose oxidation (+44%, p < 0.05) in Europids only. Of note, in skeletal muscle biopsies several respiration states were consistently lower in South Asian men compared with Europid men. CONCLUSIONS/INTERPRETATION: L-Arginine supplementation does not affect BMR, [18F]FDG uptake by BAT, or skeletal muscle mitochondrial respiration in Europid and South Asian overweight and prediabetic men. However, L-arginine improves glucose tolerance in Europids but not in South Asians. Furthermore, South Asian men have lower skeletal muscle oxidative capacity than men of European descent. FUNDING: This study was funded by the EU FP7 project DIABAT, the Netherlands Organization for Scientific Research, the Dutch Diabetes Research Foundation and the Dutch Heart Foundation. TRIAL REGISTRATION: ClinicalTrials.gov NCT02291458.


Subject(s)
Adipose Tissue, Brown/drug effects , Arginine/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/drug effects , Muscle, Skeletal/drug effects , Adipose Tissue, Brown/metabolism , Adult , Blood Glucose , Body Mass Index , Cross-Over Studies , Double-Blind Method , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Prediabetic State , Thermogenesis/drug effects
10.
Obesity (Silver Spring) ; 26(8): 1332-1337, 2018 08.
Article in English | MEDLINE | ID: mdl-30070030

ABSTRACT

OBJECTIVE: The study aimed to investigate whether markers of endocannabinoid signaling differed between men with overweight of South Asian and white Caucasian descent. METHODS: We included South Asian (n = 10) and white Caucasian (n = 10) men with overweight and prediabetes aged 35 to 50 years. Plasma samples were analyzed for endocannabinoids, their congeners, and lipids. In white adipose tissue (WAT) and skeletal muscle biopsies, mRNA expression of genes involved in the endocannabinoid system (ECS) was assessed using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fasting lipid oxidation and glucose oxidation were determined with indirect calorimetry. RESULTS: Compared to white Caucasians, South Asians had higher levels of plasma 2-linoleoyl glycerol (P < 0.01) and N-linoleoylethanolamine (P < 0.05). Interestingly, in skeletal muscle of South Asians, expression of cannabinoid receptors CB1 and CB2 was 10-fold lower (P < 0.001) and that of the endocannabinoid degradation enzyme fatty acid amide hydrolase 2 (FAAH2) was 5-fold lower (P < 0.001) compared to white Caucasians. Expression of genes involved in the ECS in WAT were not different between the two ethnicities. After pooling of both ethnicities, plasma 2-arachidonoylglycerol (2-AG) positively correlated with plasma triglycerides (R = 0.77, P < 0.001) and lipid oxidation (R = 0.55, P < 0.05). CONCLUSIONS: South Asian men with overweight have higher plasma 2-linoleoyl glycerol and N-linoleoylethanolamine levels and lower expression of CB receptors and the endocannabinoid degradation enzyme FAAH2 in skeletal muscle compared to white Caucasians.


Subject(s)
Adipose Tissue/metabolism , Asian People , Endocannabinoids/genetics , Muscle, Skeletal/metabolism , Overweight/genetics , Receptor, Cannabinoid, CB1/genetics , White People , Adipose Tissue/pathology , Adipose Tissue, White/metabolism , Adult , Asian People/genetics , Asian People/statistics & numerical data , Case-Control Studies , Endocannabinoids/blood , Endocannabinoids/metabolism , Gene Expression , Humans , Lipid Metabolism/genetics , Male , Middle Aged , Muscle, Skeletal/pathology , Netherlands/epidemiology , Overweight/ethnology , Overweight/metabolism , Overweight/pathology , Prediabetic State/ethnology , Prediabetic State/genetics , Prediabetic State/metabolism , Prediabetic State/pathology , Receptor, Cannabinoid, CB1/metabolism , Triglycerides/blood , Triglycerides/metabolism , White People/genetics , White People/statistics & numerical data
11.
Diabetologia ; 61(11): 2386-2397, 2018 11.
Article in English | MEDLINE | ID: mdl-30145664

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to evaluate the effect of sitagliptin on glucose tolerance, plasma lipids, energy expenditure and metabolism of brown adipose tissue (BAT), white adipose tissue (WAT) and skeletal muscle in overweight individuals with prediabetes (impaired glucose tolerance and/or impaired fasting glucose). METHODS: We performed a randomised, double-blinded, placebo-controlled trial in 30 overweight, Europid men (age 45.9 ± 6.2 years; BMI 28.8 ± 2.3 kg/m2) with prediabetes in the Leiden University Medical Center and the Alrijne Hospital between March 2015 and September 2016. Participants were initially randomly allocated to receive sitagliptin (100 mg/day) (n = 15) or placebo (n = 15) for 12 weeks, using a randomisation list that was set up by an unblinded pharmacist. All people involved in the study as well as participants were blinded to group assignment. Two participants withdrew from the study prior to completion (both in the sitagliptin group) and were subsequently replaced with two new participants that were allocated to the same treatment. Before and after treatment, fasting venous blood samples and skeletal muscle biopsies were obtained, OGTT was performed and body composition, resting energy expenditure and [18F] fluorodeoxyglucose ([18F]FDG) uptake by metabolic tissues were assessed. The primary study endpoint was the effect of sitagliptin on BAT volume and activity. RESULTS: One participant from the sitagliptin group was excluded from analysis, due to a distribution error, leaving 29 participants for further analysis. Sitagliptin, but not placebo, lowered glucose excursion (-40%; p < 0.003) during OGTT, accompanied by an improved insulinogenic index (+38%; p < 0.003) and oral disposition index (+44%; p < 0.003). In addition, sitagliptin lowered serum concentrations of triacylglycerol (-29%) and very large (-46%), large (-35%) and medium-sized (-24%) VLDL particles (all p < 0.05). Body weight, body composition and energy expenditure did not change. In skeletal muscle, sitagliptin increased mRNA expression of PGC1ß (also known as PPARGC1B) (+117%; p < 0.05), a main controller of mitochondrial oxidative energy metabolism. Although the primary endpoint of change in BAT volume and activity was not met, sitagliptin increased [18F] FDG uptake in subcutaneous WAT (sWAT; +53%; p < 0.05). Reported side effects were mild and transient and not necessarily related to the treatment. CONCLUSIONS/INTERPRETATION: Twelve weeks of sitagliptin in overweight, Europid men with prediabetes improves glucose tolerance and lipid metabolism, as related to increased [18F] FDG uptake by sWAT, rather than BAT, and upregulation of the mitochondrial gene PGC1ß in skeletal muscle. Studies on the effect of sitagliptin on preventing or delaying the progression of prediabetes into type 2 diabetes are warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT02294084. FUNDING: This study was funded by Merck Sharp & Dohme Corp, Dutch Heart Foundation, Dutch Diabetes Research Foundation, Ministry of Economic Affairs and the University of Granada.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Overweight/drug therapy , Overweight/metabolism , Prediabetic State/drug therapy , Sitagliptin Phosphate/therapeutic use , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adult , Blood Glucose/drug effects , Body Weight/drug effects , Carrier Proteins/genetics , Double-Blind Method , Energy Metabolism/drug effects , Humans , Male , Middle Aged , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Prediabetic State/metabolism , RNA-Binding Proteins
12.
Sci Rep ; 8(1): 8567, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867076

ABSTRACT

Human brown adipose tissue (BAT) is commonly assessed by cold-induced 18F-fluorodeoxyglucose (FDG) PET-CT using several quantification criteria. Uniform criteria for data analysis became available recently (BARCIST 1.0). We compared BAT volume and activity following BARCIST 1.0 criteria against the most commonly used criteria [Hounsfield Units (HU):-250, -50, standardized uptake value (SUV):2.0; HU: Not applied, SUV:2.0 and HU:-180, -10, SUV:1.5] in a prospective study using three independent cohorts of men including young lean adults, young overweight/obese adults and middle-aged overweight/obese adults. BAT volume was the most variable outcome between criteria. While BAT volume calculated using the HU: NA; SUV: 2.0 criteria was up to 207% higher than the BAT volume calculated based on BARCIST 1.0 criteria, it was up to 57% lower using the HU: -250, -50; SUV: 2.0 criteria compared to the BARCIST 1.0. Similarly, BAT activity (expressed as SUVmean) also differed between different thresholds mainly because SUVmean depends on BAT volume. SUVpeak was the most consistent BAT outcome across the four study criteria. Of note, we replicated these findings in three independent cohorts. In conclusion, BAT volume and activity as determined by 18F-FDG-PET/CT highly depend on the quantification criteria used. Future human BAT studies should conduct sensitivity analysis with different thresholds in order to understand whether results are driven by the selected HU and/or SUV thresholds. The design of the present study precludes providing any conclusive threshold, but before more definitive thresholds for HU and SUV are available, we support the use of BARCIST 1.0 criteria to facilitate interpretation of BAT characteristics between research groups.


Subject(s)
Adipose Tissue, Brown/diagnostic imaging , Electronic Data Processing , Fluorodeoxyglucose F18/administration & dosage , Positron-Emission Tomography , Software , Adolescent , Adult , Humans , Male , Middle Aged , Prospective Studies
13.
J Clin Lipidol ; 12(1): 56-61, 2018.
Article in English | MEDLINE | ID: mdl-29191670

ABSTRACT

BACKGROUND: Cold exposure enhances sympathetic outflow to peripheral tissues, thereby stimulating intracellular lipolysis in white adipose tissue and increasing the lipoprotein lipase-dependent uptake and combustion of triglyceride-derived fatty acids (FAs) by brown adipose tissue. Angiopoietin-like 4 (ANGPTL4) inhibits lipoprotein lipase and can be regulated by cold exposure, at least in mice. OBJECTIVE: In the present study, we examined the effect of short-term mild cooling on serum ANGPTL4 levels in healthy lean men of White Caucasian and South Asian descent. METHODS: Healthy, lean White Caucasian (n = 12) and South Asian (n = 12) men were exposed to an individualized cooling protocol for 2 hours. Serum ANGPTL4 levels were measured before and after cooling, and its relation with previously measured parameters (ie, free fatty acid [FFA] levels, body fat percentage, and resting energy expenditure) was determined. RESULTS: Short-term cooling increased ANGPTL4 levels (+17%, P < .001). Thermoneutral ANGPTL4 levels positively correlated with FFA levels (R2 = 0.250, P < .05) and body fat percentage (R2 = 0.338, P < .05). Furthermore, ANGPTL4 negatively correlated with resting energy expenditure (R2 = 0.235, P < .05). The relative increase in ANGPTL4 levels was higher in White Caucasians compared with South Asians (25 ± 4 vs 9 ± 4%, P < .05). CONCLUSION: Short-term cooling increases ANGPTL4 levels in healthy lean men. We anticipate that FFA liberated from white adipose tissue during cooling increases ANGPTL4 to limit uptake of triglyceride-derived FA by this tissue.


Subject(s)
Angiopoietin-Like Protein 4/blood , Adipose Tissue, White/metabolism , Adolescent , Adult , Asian People , Body Mass Index , Cold Temperature , Fatty Acids, Nonesterified/blood , Humans , Male , White People , Young Adult
14.
Front Physiol ; 9: 1913, 2018.
Article in English | MEDLINE | ID: mdl-30687125

ABSTRACT

The endocannabinoid system (ECS) controls energy balance by regulating both energy intake and energy expenditure. Endocannabinoid levels are elevated in obesity suggesting a potential causal relationship. This study aimed to elucidate the rate of dysregulation of the ECS, and the metabolic organs involved, in diet-induced obesity. Eight groups of age-matched male C57Bl/6J mice were randomized to receive a chow diet (control) or receive a high fat diet (HFD, 45% of calories derived from fat) ranging from 1 day up to 18 weeks before euthanasia. Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (N-arachidonoylethanolamine, AEA), and related N-acylethanolamines, were quantified by UPLC-MS/MS and gene expression of components of the ECS was determined in liver, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) during the course of diet-induced obesity development. HFD feeding gradually increased 2-AG (+132% within 4 weeks, P < 0.05), accompanied by upregulated expression of its synthesizing enzymes Daglα and ß in WAT and BAT. HFD also rapidly increased AEA (+81% within 1 week, P < 0.01), accompanied by increased expression of its synthesizing enzyme Nape-pld, specifically in BAT. Interestingly, Nape-pld expression in BAT correlated with plasma AEA levels (R 2 = 0.171, ß = 0.276, P < 0.001). We conclude that a HFD rapidly activates adipose tissue depots to increase the synthesis pathways of endocannabinoids that may aggravate the development of HFD-induced obesity.

15.
J Therm Biol ; 69: 238-248, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29037389

ABSTRACT

It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5°C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3kcal/°C/m2/day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold.


Subject(s)
Basal Metabolism , Overweight/metabolism , Thermogenesis , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/physiopathology , Adolescent , Adult , Body Composition , Body Mass Index , Body Size , Body Weight , Cold Temperature , Energy Metabolism , Humans , Male , Middle Aged , Overweight/physiopathology , Retrospective Studies , Young Adult
16.
Sci Rep ; 7(1): 7558, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28790443

ABSTRACT

South Asians have a higher risk to develop obesity and related disorders compared to white Caucasians. This is likely in part due to their lower resting energy expenditure (REE) as related with less energy-combusting brown adipose tissue (BAT). Since overactivation of the endocannabinoid system is associated with obesity and low BAT activity, we hypothesized that South Asians have a higher endocannabinoid tone. Healthy lean white Caucasian (n = 10) and South Asian (n = 10) men were cold-exposed to activate BAT. Before and after cooling, REE was assessed and plasma was collected for analysis of endocannabinoids and lipids. At thermoneutrality, South Asians had higher plasma levels of 2-arachidonoylglycerol (2-AG; 11.36 vs 8.19 pmol/mL, p < 0.05), N-arachidonylethanolamine (AEA; 1.04 vs 0.89 pmol/mL, p = 0.05) and arachidonic acid (AA; 23.24 vs 18.22 nmol/mL, p < 0.001). After pooling of both ethnicities, plasma 2-AG but not AEA positively correlated with triglycerides (R2 = 0.32, p < 0.05) and body fat percentage (R2 = 0.18, p < 0.05). Interestingly, AA negative correlated with REE (R2 = 0.46, p < 0.001) and positively with body fat percentage (R2 = 0.33, p < 0.01). Cooling increased endocannabinoids. In conclusion, South Asian compared to white Caucasian men have higher endocannabinoid tone. This suggests that endocannabinoids may, at least in part, underlie the disadvantageous metabolic phenotype of South Asians later in life.


Subject(s)
Asian People , Endocannabinoids/blood , Healthy Volunteers , White People , Adipose Tissue, Brown/metabolism , Cold Temperature , Humans , Male
17.
J Clin Lipidol ; 11(4): 920-928.e2, 2017.
Article in English | MEDLINE | ID: mdl-28625343

ABSTRACT

BACKGROUND: Cold exposure and ß3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. OBJECTIVE: The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. METHODS: Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [3H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. RESULTS: Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. CONCLUSIONS: Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol.


Subject(s)
Cold Temperature , Lipoproteins, HDL/blood , Lipoproteins, HDL/chemistry , Triglycerides/blood , ATP Binding Cassette Transporter 1/metabolism , Adult , Biological Transport , Cholesterol/metabolism , Healthy Volunteers , Humans , Male , Particle Size , Time Factors , Young Adult
18.
Arch Biochem Biophys ; 589: 152-7, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26384768

ABSTRACT

During mild cold exposure, non-shivering thermogenesis increases to maintain core body temperature by increasing utilization of substrates, especially fatty acids (FA), ultimately affecting lipid-associated metabolites. We aimed to investigate whether mild cooling induces changes in other metabolites and whether this response differs between white Caucasians and South Asians, who have a disadvantageous metabolic phenotype. 12 lean male Dutch white Caucasians and 12 matched Dutch South Asians were exposed to mild cold. Before and after 100 min exposure, serum samples were collected for analysis of 163 metabolites and 27 derived parameters using high throughput metabolomics. The overall response to mild cooling between both ethnicities was not different, therefore the data were pooled. After Bonferroni correction, mild cooling significantly changed 44 of 190 (23%) metabolic parameters. Specifically, cooling increased 19 phosphatidylcholine (PC) species, only those containing very long chain FAs, and increased the total class of PC containing mono-unsaturated FAs (+12.5%). Furthermore, cooling increased 10 sphingomyelin species as well as the amino acids glutamine (+18.7%), glycine (+11.6%) and histidine (+10.6%), and decreased short-chain (C3 and C4) acylcarnitines (-17.1% and -19.4%, respectively). In conclusion, mild cooling elicits substantial effects on serum metabolites in healthy males, irrespective of white Caucasian or South Asian ethnicity.


Subject(s)
Asian People , Body Weight , Cold Temperature , Metabolomics , Thermogenesis , White People , Adolescent , Adult , Carnitine/analogs & derivatives , Carnitine/blood , Fatty Acids, Nonesterified/blood , Glycerophospholipids/blood , Humans , Male , Sphingomyelins/blood , Young Adult
19.
Clin Pharmacol Drug Dev ; 4(2): 149-54, 2015 03.
Article in English | MEDLINE | ID: mdl-27128218

ABSTRACT

Compounds with selectivity for GABAA receptor subtypes may differ significantly from nonselective benzodiazepines in their dopaminergic effects in vivo. To explore the exact role of the GABAA receptor subtypes in the regulation of prolactin secretion and the differential effects of selective and nonselective GABA receptor modulators, the effects of the nonselective benzodiazepine lorazepam, as well as two novel α2 /α3 subunit-selective GABAA receptor modulators AZD7325 and AZD6280, on prolactin levels were measured in healthy male volunteers. Following administration of lorazepam at 2 mg doses and AZD6280 at 10 mg and 40 mg doses, prolactin levels increased significantly compared with placebo (difference 42.0%, 19.8%, and 32.8%, respectively), suggesting that the α2 and/or α3 receptor subtypes are involved in GABAergic modulation of prolactin secretion, although possible roles of the α1 and α5 receptor subtypes are not excluded. The increases in prolactin levels after administration of AZD7325 at 2 mg and 10 mg doses (difference 7.6% and 10.5%, respectively) did not reach statistical significance, suggesting that doses of AZD7325 or intrinsic efficacy at the α2 and α3 receptor subtypes may have been too low.


Subject(s)
GABA Modulators/administration & dosage , Heterocyclic Compounds, 2-Ring/administration & dosage , Lorazepam/administration & dosage , Prolactin/blood , Receptors, GABA-A/drug effects , Adolescent , Adult , Biomarkers/blood , Cross-Over Studies , Double-Blind Method , Germany , Healthy Volunteers , Humans , Male , Middle Aged , Receptors, GABA-A/metabolism , Young Adult
20.
Diabetes ; 64(5): 1544-54, 2015 May.
Article in English | MEDLINE | ID: mdl-25475439

ABSTRACT

Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[(3)H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Salicylates/pharmacology , Animals , Dietary Fats/administration & dosage , Dietary Fats/adverse effects , Drug Administration Schedule , Glucose/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Male , Mice , Mice, Transgenic , Obesity/metabolism , Salicylates/administration & dosage , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...