Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 59(94): 14017-14020, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37942945

ABSTRACT

An efficient olefin hydrosilylation protocol utilising Pt(II)-thioether-based pre-catalysts is reported. These simple and readily available complexes exhibit excellent catalytic performance and offer significant advantages over existing alternatives, enabling rapid and high conversions at ppm-level catalyst loadings.

2.
Chem Sci ; 14(36): 9787-9794, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736629

ABSTRACT

Triazolinediones are known as highly reactive dienophiles that can also act as electrophilic amination reagents towards enolisable C-H bonds (ionic pathway) or weak C-H bonds (free radical pathway). Here, we report that this C-H amination reactivity can be significantly extended and enhanced via gold(i)-catalysis. Under mild conditions, several alkyl-substituted aryls successfully undergo benzylic C-H aminations at room temperature. The remarkable site selectivity that is observed points towards strong electronic activation and deactivation effects, that go beyond a simple weakening of the C-H bond. The observed catalytic C-H aminations do not follow the expected trends for a free radical-type C-H amination and show complementarity to existing methods. Density functional theory (DFT) calculations and distinct experimental trends provide a clear mechanistic rationale for observed selectivity patterns, postulating a novel pathway for triazolinedione-induced aminations via a carbon-to-nitrogen hydride transfer.

3.
Chemistry ; 29(40): e202301259, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37196153

ABSTRACT

Herein, we report the catalytic activity of a series of platinum(II) pre-catalysts, bearing N-heterocyclic carbene (NHC) ligands, in the alkene hydrosilylation reaction. Their structural and electronic properties are fully investigated using X-ray diffraction analysis and nuclear magnetic resonance spectroscopy (NMR). Next, our study presents a structure-activity relationship within this group of pre-catalysts and gives mechanistic insights into the catalyst activation step. An exceptional catalytic performance of one of the complexes is observed, reaching a turnover number (TON) of 970 000 and a turnover frequency (TOF) of 40 417 h-1 at 1 ppm catalyst loading. Finally, an attractive solvent-free and open-to-air alkene hydrosilylation protocol, featuring efficient platinum removal (reduction of residual Pt from 582 ppm to 5.8 ppm), is disclosed.

4.
Chemistry ; 28(70): e202201898, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36106679

ABSTRACT

A series of NHC-based selenourea Ag(I) and Au(I) complexes were evaluated for their anticancer potential in vitro, on 2D and 3D human cancer cell systems. All NHC-based selenourea complexes possess an outstanding cytotoxic potency, which was comparable or even better than that of the reference metallodrug auranofin, and were also able to overcome both platinum-based and multi-drug resistances. Intriguingly, their cytotoxic potency did not correlate with solution stability, partition coefficient or cellular uptake. On the other hand, mechanistic studies in cancer cells revealed their ability to strongly and selectively inhibit the redox-regulating enzyme Thioredoxin Reductase (TrxR), being even more effective than auranofin, a well-known TrxR inhibitor, without affecting other redox enzymes such as Glutathione Reductase (GR). The inhibition of TrxR in H157 human cancer cells caused, in turn, the disruption of cellular thiol-redox homeostasis and of mitochondria pathophysiology, ultimately leading to cancer cell death through apoptosis.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Thioredoxin-Disulfide Reductase , Gold , Silver , Auranofin/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Oxidation-Reduction , Homeostasis , Cell Line, Tumor
5.
Molecules ; 27(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684526

ABSTRACT

α-Haloketones play an essential role in the synthesis of complex N-, S-, O-heterocycles; of which some exhibit a remarkable biological activity. Research further illustrated that α-bromo-, α-chloro-, and α-iodoketones are key precursors for blockbuster pharmacological compounds. Over the past twenty years, substantial advances have been made in the synthesis of these industrially relevant building blocks. Efforts have focused on rendering the synthetic protocols greener, more effective and versatile. In this survey, we summarised and thoroughly evaluated the progress of the field, established in the past two decades, in terms of generality, efficacy and sustainability.

6.
Dalton Trans ; 51(16): 6204-6211, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35357386

ABSTRACT

A sustainable and facile weak-base synthetic route to platinum N-heterocyclic carbene (NHC) complexes is disclosed. The mechanism of this reaction is also elucidated via experimental and computational investigations. This straightforward protocol is then used for the synthesis of novel Pt(II)-NHC complexes and its utility is further explored to access key Pt(0)-NHC precatalysts.

7.
Dalton Trans ; 51(9): 3721-3733, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35169826

ABSTRACT

We have investigated the reactions of chalcogenoureas derived from N-heterocyclic carbenes, referred to here as [E(NHC)], with halogens. Depending on the structure of the chalcogenourea and the identity of the halogen, a diverse range of reactivity was observed and a corresponding range of structures was obtained. Cyclic voltammetry was carried out to characterise the oxidation and reduction potentials of these [E(NHC)] species; selenoureas were found to be easier to oxidise than the corresponding thioureas. In some cases, a correlation was found between the oxidation potential of these compounds and the electronic properties of the corresponding NHC. The reactivity of these chalcogenoureas with different halogenating reagents (Br2, SO2Cl2, I2) was then investigated, and products were characterised using NMR spectroscopy and single-crystal X-ray diffraction. X-ray analyses elucidated the solid-state coordination types of the obtained products, showing that a variety of possible adducts can be obtained. In some cases, we were able to extrapolate a structure/activity correlation to explain the observed trends in reactivity and oxidation potentials.

8.
ChemSusChem ; 14(18): 3810-3814, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34291872

ABSTRACT

The integration of a membrane separation protocol with the platinum-catalyzed hydrosilylation of olefins is investigated. The catalytic reaction is first optimized in batch where [Pt(IPr*)(dms)Cl2 ] (IPr*=1,3-bis[2,6-bis(diphenylmethyl)-4-methylphenyl]imidazol-2-ylidene, dms=dimethyl sulfide) demonstrates superior activity compared to the less sterically encumbered [Pt(SIPr)(dms)Cl2 ] (SIPr=1,3-bis(2,6-diisopropylphenyl)imidazolidine) congener. Filtration conditions are identified in membrane screening experiments. Hydrosilylation of 1-octene catalyzed by [Pt(IPr*)(dms)Cl2 ] is conducted in continuous mode and the platinum catalyst is separated efficiently over the commercially available Borsig oNF-2 membrane, all under solvent-free conditions. An advantage of this process is that both reaction and separation are coupled in a single step. Moreover, at the end of the process the intact catalyst was recovered in 80 % yield as an off-white solid without any further purification.

9.
Chemistry ; 27(33): 8461-8467, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33822412

ABSTRACT

Readily prepared and bench-stable [Au(CF3 )(NHC)] compounds were synthesized by using new methods, starting from [Au(OH)(NHC)], [Au(Cl)(NHC)] or [Au(L)(NHC)]HF2 precursors (NHC=N-heterocyclic carbene). The mechanism of formation of these species was investigated. Consequently, a new and straightforward strategy for the mild and selective cleavage of a single carbon/fluorine bond from [Au(CF3 )(NHC)] complexes was attempted and found to be reversible in the presence of an additional nucleophilic fluoride source. This straightforward technique has led to the unprecedented spectroscopic observation of a gold(I)-NHC difluorocarbene species.

10.
Nat Protoc ; 16(3): 1476-1493, 2021 03.
Article in English | MEDLINE | ID: mdl-33504989

ABSTRACT

N-heterocyclic carbene gold(I) chloride and hydroxide complexes are regularly used as synthons to access various oxygen-, nitrogen- or carbon-bound gold complexes. They are also widely employed as efficient catalysts in addition reactions of hydroelements to unsaturated bonds and in several rearrangement and decarboxylation protocols. Here we describe the multigram synthesis of the most common mononuclear N-heterocyclic carbene gold(I) chloride complexes bearing the N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and N,N'-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene (IPr*) ligands. Their synthesis is achieved through the straightforward and practical weak base approach in a total time of 4-5 h. This straightforward methodology is conducted under air and possesses considerable advantages over alternative routes, such as the use of a sustainable reaction solvent, minimal amounts of a mild base and commercially available or easily obtained starting materials. Additionally, we describe the synthesis of the mononuclear gold(I) hydroxide complex bearing the IPr ligand, using the state-of-the-art method requiring 24 h. Finally, the improved synthesis of the dinuclear gold(I) hydroxide complex [{Au(IPr)}2(µ-OH)][BF4] is described (~3 h). All procedures can be performed by researchers with standard training and lead to high yields (76-99%) of microanalytically pure bench-stable materials.


Subject(s)
Gold/chemistry , Heterocyclic Compounds/chemical synthesis , Methane/analogs & derivatives , Catalysis , Heterocyclic Compounds/chemistry , Imidazoles , Imidazolidines , Ligands , Methane/chemical synthesis , Models, Molecular
11.
Chem Soc Rev ; 50(5): 3094-3142, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33475632

ABSTRACT

This review is a critical presentation of catalysts based on palladium and ruthenium bearing N-heterocyclic carbene ligands that have enabled a more sustainable approach to catalysis and to catalyst uses. Aspects of sustainability associated with these in terms of catalytic uses or synthetic access are reviewed.

12.
Dalton Trans ; 49(41): 14673-14679, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33064119

ABSTRACT

A general, user-friendly synthetic route to [Pt(NHC)(L)Cl2] and [Pt(NHC)(dvtms)] (L = DMS, Py; DMS = dimethyl sulfide, dvtms = divinyltetramethylsiloxane, Py = pyridine) complexes has been developed. The procedure is applicable to a wide range of ligands and enables facile synthetic access to key Pt(0)- and Pt(ii)-NHC complexes used in hydrosilylation catalysis.

13.
iScience ; 23(8): 101377, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32759055

ABSTRACT

The development of more reactive, general, easily accessible, and readily available Pd(II)-NHC precatalysts remains a key challenge in homogeneous catalysis. In this study, we establish air-stable NHC-Pd(II) chloro-dimers, [Pd(NHC)(µ-Cl)Cl]2, as the most reactive Pd(II)-NHC catalysts developed to date. Most crucially, compared with [Pd(NHC)(allyl)Cl] complexes, replacement of the allyl throw-away ligand with chloride allows for a more facile activation step, while effectively preventing the formation of off-cycle [Pd2(µ-allyl)(µ-Cl)(NHC)2] products. The utility is demonstrated via broad compatibility with amide cross-coupling, Suzuki cross-coupling, and the direct, late-stage functionalization of pharmaceuticals. Computational studies provide key insight into the NHC-Pd(II) chloro-dimer activation pathway. A facile synthesis of NHC-Pd(II) chloro-dimers in one-pot from NHC salts is reported. Considering the tremendous utility of Pd-catalyzed cross-coupling reactions and the overwhelming success of [Pd(NHC)(allyl)Cl] precatalysts, we believe that NHC-Pd(II) chloro-dimers, [Pd(NHC)(µ-Cl)Cl]2, should be considered as go-to precatalysts of choice in cross-coupling processes.

14.
Dalton Trans ; 49(34): 12068-12081, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32820302

ABSTRACT

Chalcogen-based urea compounds supported by a wide range of N-heterocyclic carbenes are synthesised and fully characterised. Coordination of selenoureas is further explored with Group 11 transition metals to form new copper, gold and silver complexes. Single crystal X-ray analyses unambiguously establish the solid-state coordination of these complexes and show that the geometry of a complex is highly influenced by a combination of electronic properties - mainly π-accepting ability - and steric hindrance of the ligands, as well as the nature of the metal, affording a variety of coordination behaviours. In this report, we investigate these phenomena using several experimental methods.

15.
Chem Commun (Camb) ; 56(44): 5953-5956, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32347246

ABSTRACT

The reaction mechanism leading to the formation of cross-coupling palladium pre-catalysts of the PEPPSI family was investigated. Two intermediates were isolated and proved to be both suitable synthons to the pre-catalysts, with one permitting the design of a novel and greener user-friendly synthetic route. In light of this mechanistic understanding, the traditional one-pot method was shown to be possible using stoichiometric amounts of throw-away ligand, which represents a considerable synthetic improvement over the wasteful "in pyridine" approach.

16.
Chemistry ; 26(24): 5541-5551, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32077182

ABSTRACT

The discovery of sustainable and scalable synthetic protocols leading to gold-aryl compounds bearing N-heterocyclic carbene (NHC) ligands sparked an investigation of their reactivity and potential utility as organometallic synthons. The use of a mild base and green solvents provide access to these compounds, starting from widely available boronic acids and various [Au(NHC)Cl] complexes, with reactions taking place under air, at room temperature and leading to high yields with unprecedented ease. One compound, (N,N'-bis[2,6-(di-isopropyl)phenyl]imidazol-2-ylidene)(4-methoxyphenyl)gold, ([Au(IPr)(4-MeOC6 H4 )]), was synthesized on a multigram scale and used to gauge the reactivity of this class of compounds towards C-H/N-H bonds and with various acids, revealing simple pathways to gold-based species that possess attractive properties as materials, reagents and/or catalysts.

17.
Chemistry ; 26(20): 4515-4519, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32022329

ABSTRACT

We have been puzzled by the involvement of weak organic and inorganic bases in the synthesis of metal-N-heterocyclic carbene (NHC) complexes. Such bases are insufficiently strong to permit the presumed required deprotonation of the azolium salt (the carbene precursor) prior to metal binding. Experimental and computational studies provide support for a base-assisted concerted process that does not require free NHC formation. The synthetic protocol was found applicable to a number of transition-metal- and main-group-centered NHC compounds and could become the synthetic route of choice to form M-NHC bonds.

18.
Chem Commun (Camb) ; 55(80): 12068-12071, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31536070

ABSTRACT

The first example of a NHC-based copper azide complex is reported. Its reactivity was investigated with various reagents affording 8 new complexes.

19.
Chem Commun (Camb) ; 55(47): 6799-6802, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31123732

ABSTRACT

A new class of [Au(NHC)(Bpin)] complexes has been synthesized and their unusual reactivity was investigated using computational and experimental methods. The gold-boryl complexes exhibit unexpected high stability and reactivity.

20.
Org Biomol Chem ; 17(15): 3805-3811, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30916709

ABSTRACT

Gold(i) catalysed regio- and stereoselective intermolecular hydroamination of internal alkynes was developed for the effective synthesis of a series of (Z)-functionalised vinylazoles under solvent free conditions. The catalytic hydrogenation of the resulting enamines leads to substituted saturated azoles in good yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...