Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069145

ABSTRACT

Parturition is the final and essential step for mammalian reproduction. While the uterus is quiescent during pregnancy, fundamental changes arise in the myometrial contractility, inducing fetal expulsion. Extracellular matrix (ECM) remodeling is fundamental for these events. The gelatinases subgroup of matrix metalloproteinases (MMPs), MMP2 and MMP9, participate in uterine ECM remodeling throughout pregnancy and parturition. However, their loss-of-function effect is unknown. Here, we determined the result of eliminating Mmp2 and/or Mmp9 on parturition in vivo, using single- and double-knockout (dKO) mice. The dystocia rates were measured in each genotype, and uterine tissue was collected from nulliparous synchronized females at the ages of 2, 4, 9 and 12 months. Very high percentages of dystocia (40-55%) were found in the Mmp2-/- and dKO females, contrary to the Mmp9-/- and wild-type females. The histological analysis of the uterus and cervix revealed that Mmp2-/- tissues undergo marked structural alterations, including highly enlarged myometrial, endometrial and luminal cavity. Increased collagen deposition was also demonstrated, suggesting a mechanism of extensive fibrosis in the Mmp2-/- myometrium, which may result in dystocia. Overall, this study describes a new role for MMP2 in myometrium remodeling during mammalian parturition process, highlighting a novel cause for dystocia due to a loss in MMP2 activity in the uterine tissue.


Subject(s)
Dystocia , Matrix Metalloproteinase 9 , Animals , Female , Mice , Pregnancy , Dystocia/genetics , Dystocia/pathology , Mammals , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Myometrium/pathology , Parturition/genetics
2.
Front Microbiol ; 14: 1126896, 2023.
Article in English | MEDLINE | ID: mdl-37032878

ABSTRACT

Mastitis is one of the most prevalent and economically important diseases of dairy animals. The disease is caused by ascending bacterial infection through the teat canal. Among the most common mastitis-causing bacteria are Gram-negative coliforms, Gram-positive streptococci and staphylococci, and mycoplasma. The most prominent cellular hallmark of acute mammary infection is a massive recruitment of blood neutrophils into the tubular and alveolar milk spaces. The complex biological processes of leukocyte recruitment, activation, adhesion, and migration in the mammary gland remain largely elusive to date. While field research of mastitis in dairy animals contributed a lot to the development of mitigation, control, and even eradication programs, little progress was made toward understanding the molecular mechanisms underlying the pathogenesis of the disease. We report here experimental mastitis model systems in lactating mice challenged with field strains of common udder pathogens in dairy cows. We used these model systems to apply recently developed multiplex gene expression technology (Nanostring nCounter), which enabled us to study the expression of over 700 immune genes. Our analysis revealed a core of 100 genes that are similarly regulated and functionally or physically interacting in E. coli, M. bovis, and Strep uberis murine mastitis. Common significantly enriched gene sets include TNFɑ signaling via NFkB, Interferon gamma and alpha response, and IL6-JAK-STAT3 signaling. In addition, we show a significantly enriched expression of genes associated with neutrophil extracellular traps (NET) in glands challenged by the three pathogens. Ligand-receptor analysis revealed interactions shared by the three pathogens, including the interaction of the cytokines IL1ß, IL1ɑ, and TNFɑ with their receptors, and proteins involved in immune cell recruitment such as complement C3 and ICAM1 (with CD11b), chemokines CCL3 and CCL4 (with CCR1), and CSF3 (with CSF3R). Taken together, our results show that mammary infection with E. coli, M. bovis, and Strep uberis culminated in the activation of a conserved core of immune genes and pathways including NET formation.

3.
BMC Vet Res ; 19(1): 64, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997964

ABSTRACT

The use of mesenchymal stromal cells (MSCs) is emerging as an efficacious and safe treatment for many infectious and non-infectious inflammatory diseases in human and veterinary medicine. Such use could be done to treat mastitis and metritis, which are the most common disease conditions affecting dairy cows leading to considerable economic losses and reduced animal welfare. Currently, both disease conditions are commonly treated using local and systemic administration of antibiotics. However, this strategy has many disadvantages including low cure rates and the public health hazards. Looking for alternative approaches, we investigated the properties of MSCs using in-vitro mammary and endometrial cell systems and in-vivo mastitis and metritis murine model systems. In-vitro, co-culture of mammary and uterus epithelial cells constructed with NF-kB reporter system, the master regulator of inflammation, demonstrated their anti-inflammatory effects in response to.LPS. In vivo, we challenge animals with field strains of mammary and utero pathogenic Escherichia coli and evaluated the effects of local and systemic application of MSC in the animal models. Disease outcome was evaluated using histological analysis, bacterial counts and gene expression of inflammatory markers. We show that MSC treatment reduced bacterial load in metritis and significantly modulated the inflammatory response of the uterus and mammary gland to bacterial infection. Most notably are the immune modulatory effects of remotely engrafted intravenous MSCs, which open new avenues to the development of MSC-based cell-free therapies.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Mesenchymal Stem Cells , Female , Cattle , Humans , Animals , Mice , Escherichia coli , Inflammation/veterinary , Inflammation/pathology , Uterus/pathology , Mammary Glands, Animal/pathology , Mastitis, Bovine/microbiology , Cattle Diseases/pathology
4.
Tissue Barriers ; 10(2): 1994350, 2022 04 03.
Article in English | MEDLINE | ID: mdl-34709129

ABSTRACT

Fistula treatment represents a major unmet medical need in the therapy of Crohn's disease (CD). Current medical therapies, such as anti-TNF antibody treatments, are often insufficient and do not achieve permanent fistula closure. Previously published data point toward a critical role for metalloproteinase-9 (MMP-9)/gelatinase B in fistula pathogenesis. The aim of this project was to investigate in detail MMP-9 expression in different fistula types and to confirm that MMP-9 is a potential target for fistula therapy in CD patients.Immunohistochemistry for total and active MMP-9, Cytokeratin 8 (CK-8) and co-staining of active MMP-9/CK-8 was performed in specimen derived from perianal fistulas, entero-enteric fistulas and fistulas from patients not responding to anti-TNF therapy. In addition, fistulas from the xenograft mouse model (anti-TNF treated or untreated) were analyzed.Total and active MMP-9 protein was detectable in cells lining the tracts of perianal and entero-enteric fistulas. Of note, total and active MMP-9 was also expressed in fistulas of CD patients non-responding to anti-TNF treatment. Interestingly, we detected considerable co-staining of active MMP-9 and CK-8 in particular in cells lining the fistula tract and in transitional cells around the fistulas. Furthermore, total and active MMP-9 are detectable in both anti-TNF treated and untreated xenograft fistulas.Taken together, our data suggest that MMP-9 is involved in fistula pathogenesis in CD patients, in fistulas of different origins and particularly in patients non-responding to anti-TNF therapy. Our xenograft fistula model is suitable for in vivo studies investigating a possible therapeutic role for MMP-9 targeting as fistula therapy.


Subject(s)
Crohn Disease , Intestinal Fistula , Animals , Crohn Disease/complications , Crohn Disease/drug therapy , Crohn Disease/pathology , Heterografts , Humans , Intestinal Fistula/drug therapy , Intestinal Fistula/etiology , Matrix Metalloproteinase 9/therapeutic use , Mice , Tumor Necrosis Factor Inhibitors
5.
Sci Rep ; 11(1): 12796, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140608

ABSTRACT

In mammals, neural crest cells populate the gut and form the enteric nervous system (ENS) early in embryogenesis. Although the basic ENS structure is highly conserved across species, we show important differences between mice and humans relating to the prenatal and postnatal development of mucosal enteric glial cells (mEGC), which are essential ENS components. We confirm previous work showing that in the mouse mEGCs are absent at birth, and that their appearance and homeostasis depends on postnatal colonization by microbiota. In humans, by contrast, a network of glial cells is already present in the fetal gut. Moreover, in xenografts of human fetal gut maintained for months in immuno-compromised mice, mEGCs persist following treatment with antibiotics that lead to the disappearance of mEGCs from the gut of the murine host. Single cell RNAseq indicates that human and mouse mEGCs differ not only in their developmental dynamics, but also in their patterns of gene expression.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Intestinal Mucosa/cytology , Neuroglia/metabolism , Animals , Female , Fetus/cytology , Gene Expression Regulation , Heterografts , Humans , Mice , Neuroglia/cytology
6.
PLoS One ; 16(5): e0243010, 2021.
Article in English | MEDLINE | ID: mdl-33939711

ABSTRACT

The single-epithelial cell layer of the gut mucosa serves as an essential barrier between the host and luminal microflora and plays a major role in innate immunity against invading pathogens. Nuclear factor kB (NF-κB), a central component of the cellular signaling machinery, regulates immune response and inflammation. NF-κB proteins are activated by signaling pathways downstream to microbial recognition receptors and cytokines receptors. Highly regulated NF-κB activity in intestinal epithelial cells (IEC) is essential for normal gut homeostasis; dysregulated activity has been linked to a number of disease states, including inflammatory bowel diseases (IBD) such as Crohn's Disease (CD). Our aim was to visualize and quantify spatial and temporal dynamics of NF-κB activity in steady state and inflamed human gut. Lentivirus technology was used to transduce the IEC of human gut xenografts in SCID mice with a NF-κB luminescence reporter system. NF-κB signaling was visualized and quantified using low resolution, intravital imaging of the whole body and high resolution, immunofluorescence microscopic imaging of the tissues. We show that NF-κB is activated in select subset of IEC with low "leaky" NF-κB activity. These unique inflammatory epithelial cells are clustered in the gut into discrete hotspots of NF-κB activity that are visible in steady state and selectively activated by systemic LPS and human TNFα or luminal bacteria. The presence of inflammatory hotspots in the normal and inflamed gut might explain the patchy mucosal lesions characterizing CD and thus could have important implications for diagnosis and therapy.


Subject(s)
Heterografts/immunology , Intestinal Mucosa/immunology , NF-kappa B/metabolism , Animals , HEK293 Cells , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/transplantation , Lipopolysaccharides/pharmacology , Mice , Mice, SCID , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
7.
Vet Res ; 51(1): 77, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32539761

ABSTRACT

Mastitis, inflammation of the mammary gland, is a common disease of dairy animals. The disease is caused by bacterial infection ascending through the teat canal and mammary pathogenic Escherichia coli (MPEC) are common etiology. In the first phase of infection, virulence mechanisms, designated as niche factors, enable MPEC bacteria to resist innate antimicrobial mechanisms, replicate in milk, and to colonize the mammary gland. Next, massive replication of colonizing bacteria culminates in a large biomass of microbe-associated molecular patterns (MAMPs) recognized by pattern recognition receptors (PRRs) such as toll-like receptors (TLRs) mediating inflammatory signaling in mammary alveolar epithelial cells (MAEs) and macrophages. Bacterial lipopolysaccharides (LPSs), the prototypical class of MAMPs are sufficient to elicit mammary inflammation mediated by TLR4 signaling and activation of nuclear factor kB (NF-kB), the master regulator of inflammation. Using in vivo mastitis model, in low and high complements mice, and in vitro NF-kB luminescence reporter system in MAEs, we have found that the smooth configuration of LPS O-polysaccharides in MPEC enables the colonizing organisms to evade the host immune response by reducing inflammatory response and conferring resistance to complement. Screening a collection of MPEC field strains, we also found that all strains were complement resistant and 94% (45/48) were smooth. These results indicate that the structure of LPS O-polysaccharides chain is important for the pathogenesis of MPEC mastitis and provides protection against complement-mediated killing. Furthermore, we demonstrate a role for complement, a key component of innate immunity, in host-microbe interactions of the mammary gland.


Subject(s)
Complement Activation/immunology , Escherichia coli Infections/veterinary , Larva/immunology , Mastitis, Bovine/immunology , Moths/immunology , Polysaccharides, Bacterial/immunology , Animals , Cattle , Disease Models, Animal , Escherichia coli/physiology , Escherichia coli Infections/immunology , Female , Larva/growth & development , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Moths/growth & development , NF-kappa B/immunology
8.
Vet Res ; 50(1): 56, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31324217

ABSTRACT

Neutrophil mobilization is a crucial response to protect the host against invading microorganisms. Neutrophil recruitment and removal have to be tightly regulated to prevent uncontrolled inflammation and excessive release of their toxic content causing tissue damage and subsequent organ dysfunctions. We show here the presence of live and apoptotic neutrophils in the cytoplasm of inflamed mammary, urinary and gall bladder epithelial cells following infection with E. coli and Salmonella bacteria. The entry process commenced with adherence of transmigrated neutrophils to the apical membrane of inflamed epithelial cells. Next, nuclear rearrangement and elongation associated with extensive actin polymerization enabled neutrophils to crawl and invaginate the apical membrane into cytoplasmic double membrane compartments. Scission of the invaginated cell membrane from the entry point and loss of these surrounding membranes released intracellular neutrophils into the cytoplasm where they undergone apoptotic death. The co-occurrence of this observation with bacterial invasion and formation of intracellular bacterial communities (IBCs) might link entry of infected neutrophils to the formation of IBCs and chronic carriage in E. coli mastitis and cystitis and Salmonella cholecystitis.


Subject(s)
Escherichia coli Infections/microbiology , Gallbladder Diseases/microbiology , Mastitis/microbiology , Neutrophils/metabolism , Urinary Tract Infections/microbiology , Animals , Epithelial Cells/metabolism , Escherichia coli/pathogenicity , Female , Mice , Mice, Inbred C57BL
9.
Gastroenterology ; 156(6): 1775-1787, 2019 05.
Article in English | MEDLINE | ID: mdl-30710527

ABSTRACT

BACKGROUND & AIMS: Crohn's disease (CD) is characterized by an imbalance of effector and regulatory T cells in the intestinal mucosa. The efficacy of anti-adhesion therapies led us to investigate whether impaired trafficking of T-regulatory (Treg) cells contributes to the pathogenesis of CD. We also investigated whether proper function could be restored to Treg cells by ex vivo expansion in the presence of factors that activate their regulatory activities. METHODS: We measured levels of the integrin α4ß7 on Treg cells isolated from peripheral blood or lamina propria of patients with CD and healthy individuals (controls). Treg cells were expanded ex vivo and incubated with rapamycin with or without agonists of the retinoic acid receptor-α (RARA), and their gene expression profiles were analyzed. We also studied the cells in cytokine challenge, suppression, and flow chamber assays and in SCID mice with human intestinal xenografts. RESULTS: We found that Treg cells from patients with CD express lower levels of the integrin α4ß7 than Treg cells from control patients. The pathway that regulates the expression of integrin subunit α is induced by retinoic acid (RA). Treg cells from patients with CD incubated with rapamycin and an agonist of RARA (RAR568) expressed high levels of integrin α4ß7, as well as CD62L and FOXP3, compared with cells incubated with rapamycin or rapamycin and all-trans retinoic acid. These Treg cells had increased suppressive activities in assays and migrated under conditions of shear flow; they did not produce inflammatory cytokines, and RAR568 had no effect on cell stability or lineage commitment. Fluorescently labeled Treg cells incubated with RAR568 were significantly more likely to traffic to intestinal xenografts than Treg cells expanded in control medium. CONCLUSIONS: Treg cells from patients with CD express lower levels of the integrin α4ß7 than Treg cells from control patients. Incubation of patients' ex vivo expanded Treg cells with rapamycin and an RARA agonist induced expression of α4ß7 and had suppressive and migratory activities in culture and in intestinal xenografts in mice. These cells might be developed for treatment of CD. ClinicalTrials.gov, Number: NCT03185000.


Subject(s)
Crohn Disease/immunology , Integrins/metabolism , Retinoic Acid Receptor alpha/agonists , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Adult , Animals , Antineoplastic Agents/pharmacology , Case-Control Studies , Cell Culture Techniques , Cell Movement/drug effects , Cells, Cultured , Female , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Heterografts , Humans , Immunosuppressive Agents/pharmacology , Integrins/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/transplantation , L-Selectin/metabolism , Lymphocyte Activation , Male , Mice , Mice, SCID , Middle Aged , Organic Chemicals/pharmacology , Sirolimus/pharmacology , T-Lymphocytes, Regulatory/immunology , Transcriptome/drug effects , Tretinoin/pharmacology
10.
J Crohns Colitis ; 13(6): 798-806, 2019 May 27.
Article in English | MEDLINE | ID: mdl-30590414

ABSTRACT

BACKGROUND AND AIMS: Enteric fistulas represent a severe and medically challenging comorbidity commonly affecting Crohn's disease [CD] patients. Gut fistulas do not develop in animal models of the disease. We have used transplantation of the human fetal gut into mice as a novel platform for studying inflammatory enterocutaneous fistulas. METHODS: Human fetal gut segments were transplanted subcutaneously into mature SCID mice, where they grew and fully developed over the course of several months. We first analysed the resident immune cells and inflammatory response elicited by systemic lipopolysaccharide [LPS] in normal, fully developed human gut xenografts. Thereafter, we used immunostaining to analyse fully developed xenografts that spontaneously developed enterocutaneous fistulas. RESULTS: Resident human innate and adaptive immune cells were demonstrated in gut xenografts during steady state and inflammation. The expression of human IL-8, IL-1ß, IL-6, TNF-α, A20, and IkBα was significantly elevated in response to LPS, with no change in IL-10 gene expression. Approximately 17% [19/110] of fully developed subcutaneous human gut xenografts spontaneously developed enterocutaneous fistulas, revealing striking histopathological similarities with CD fistula specimens. Immunohistochemical analyses of fistulating xenografts revealed transmural lymphocytic enteritis associated with massive expansion of resident human CD4+ lymphocytes and their migration into the intraepithelial compartment. Regionally, mucosal epithelial cells assumed spindle-shaped mesenchymal morphology and formed fistulous tracts towards chronic non-healing wounds in the host mouse skin overlying the transplants. CONCLUSIONS: Inflammation and fistulas developed in human gut xenografts lacking IL-10 gene response. This novel model system will enable systematic studies of the inflamed and fistulating human gut in live animals.


Subject(s)
Disease Models, Animal , Heterografts/surgery , Intestinal Fistula/pathology , Intestines/transplantation , Animals , Female , Fetal Tissue Transplantation , Heterografts/drug effects , Heterografts/metabolism , Heterografts/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Intestinal Fistula/metabolism , Intestines/pathology , Lipopolysaccharides/pharmacology , Mice , Mice, SCID , Real-Time Polymerase Chain Reaction
11.
Vet Res ; 49(1): 77, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30068391

ABSTRACT

Post-partum metritis is among the most prevalent disease in dairy cows affecting animal welfare and inflicting considerable economic loses. While post-partum contamination of the uterus is rife in dairy cows, only a fraction of these animals will develop metritis. Our main objective was to compare the bacterial communities and the inflammatory response in the endometrium of healthy and metritic dairy cows. Holstein-Friesian cows (n = 35) were sampled immediately following clinical classification as healthy (n = 21), suffering from metritis (n = 13) or septic metritis (n = 1), based on veterinary examination at 5-10 days post-partum. Polymorphonuclear cells (PMN) percentage in endometrial cytology was significantly higher in cows with metritis. Full-thickness uterine biopsy analysis revealed that the luminal epithelium in inter-caruncle areas was preserved in healthy cows, but in metritis it was compromised, with marked PMN infiltration particularly in the apical endometrium. Gram staining revealed that bacterial load and spatial distribution was associated with disease severity. 16S-rDNA bacterial community analysis revealed unique endometrial bacterial community composition in metritic cows, as compared to more diverse communities among healthy cows. The most abundant phyla in healthy cows were Proteobacteria (31.8 ± 9.3%), Firmicutes (27.9 ± 8.4%) and Bacteroidetes (19.7 ± 7.2%), while Bacteroidetes (60.3 ± 10.3%), Fusobacteria (13.4 ± 5.9%) and Firmicutes (10.5 ± 3.3%) were most abundant in the endometrial mucosa of metritic cows. Relative abundance of Bacteroidetes (19.7 ± 7.2% vs. 60.3 ± 10.3%), Fusobacteria (7.5 ± 5.2% vs. 13.4 ± 5.9%) and Proteobacteria (31.8 ± 9.3% vs. 7.3 ± 5.6%) phyla differed significantly between healthy and metritic cows. In summary, endometrial PMN abundance, spatial distribution and bacterial communities differed between healthy and metritic dairy cows at early post-partum.


Subject(s)
Cattle Diseases/immunology , Cattle Diseases/microbiology , Endometritis/veterinary , Inflammation/veterinary , Microbiota , Animals , Cattle/physiology , Endometritis/immunology , Endometrium/cytology , Endometrium/immunology , Female , Inflammation/immunology , Israel , Postpartum Period , RNA, Ribosomal, 16S/analysis , Reproduction , Sequence Analysis, DNA/veterinary
12.
Infect Immun ; 85(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-28784929

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe intestinal disease and infant mortality in developing countries. Virulence is mediated by a type three secretion system (T3SS), causing the hallmark attaching and effacing (AE) lesions and actin-rich pedestal formation beneath the infecting bacteria on the apical surface of enterocytes. EPEC is a human-specific pathogen whose pathogenesis cannot be studied in animal models. We therefore established an EPEC infection model in human gut xenografts in SCID mice and used it to study the role of T3SS in the pathogenesis of the disease. Following EPEC O127:H6 strain E2348/69 infection, T3SS-dependent AE lesions and pedestals were demonstrated in all infected xenografts. We report here the development of T3SS-dependent intestinal thrombotic microangiopathy (iTMA) and ischemic enteritis in ∼50% of infected human gut xenografts. Using species-specific CD31 immunostaining, we showed that iTMA was limited to the larger human-mouse chimeric blood vessels, which are located between the muscularis mucosa and circular muscular layer of the human gut. These blood vessels were massively invaded by bacteria, which adhered to and formed pedestals on endothelial cells and aggregated with mouse neutrophils in the lumen. We conclude that endothelial infection, iTMA, and ischemic enteritis might be central mechanisms underlying severe EPEC-mediated disease.

13.
Graefes Arch Clin Exp Ophthalmol ; 255(8): 1605-1611, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28456826

ABSTRACT

BACKGROUND: Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. METHODS: We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. RESULTS: Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p < 0.05), but did not differ from one another statistically. CONCLUSION: DM stripping during posterior lamellar surgery is imperative for favorable post-operative results and prevention of complications. Performing this step under air in the AC contributes to better visualization and an efficient surgery.


Subject(s)
Descemet Stripping Endothelial Keratoplasty/methods , Fuchs' Endothelial Dystrophy/surgery , Sodium Chloride/administration & dosage , Aged , Aged, 80 and over , Air , Anterior Chamber , Female , Follow-Up Studies , Fuchs' Endothelial Dystrophy/diagnosis , Humans , Injections , Male , Middle Aged , Pilot Projects , Retrospective Studies , Visual Acuity
14.
Gut ; 65(4): 584-94, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25715355

ABSTRACT

BACKGROUND AND AIM: Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. METHODS: To define the optimum population for Treg cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(-) Treg subsets were isolated from patients' blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. RESULTS: Tregs can be expanded from the blood of patients with CD to potential target dose within 22-24 days. Expanded CD45RA(+) Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(-) Tregs. CD45RA(+) Tregs highly express α4ß7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CONCLUSIONS: CD4(+)CD25(+)CD127(lo)CD45RA(+) Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials.


Subject(s)
Adoptive Transfer , Cell- and Tissue-Based Therapy/methods , Crohn Disease/therapy , T-Lymphocytes, Regulatory/immunology , Animals , Crohn Disease/immunology , DNA Methylation , Enzyme-Linked Immunosorbent Assay , Forkhead Transcription Factors/genetics , Humans , In Vitro Techniques , Interleukin-17/metabolism , Leukocyte Common Antigens/immunology , Mice , Mice, SCID , Phenotype , Polymerase Chain Reaction , Transplantation, Heterologous
15.
PLoS One ; 10(9): e0139111, 2015.
Article in English | MEDLINE | ID: mdl-26407190

ABSTRACT

On dairy farms in hot climates worldwide, cows suffer from heat stress, which is alleviated by the use of water cooling systems. Sprinklers and showerheads are known to support the development of microbial biofilms, which can be a source of infection by pathogenic microorganisms. The aim of this study was to investigate the presence of microbial biofilms in dairy cooling systems, and to analyze their population compositions using culture-independent technique, 16S rRNA gene sequencing. Biofilm samples were collected on eight dairy farms from 40 sprinklers and the microbial constituents were identified by deep sequencing of the 16S rRNA gene. A total of 9,374 operational taxonomic units (OTUs) was obtained from all samples. The mean richness of the samples was 465 ± 268 OTUs which were classified into 26 different phyla; 76% of the reads belonged to only three phyla: Proteobacteria, Actinobacteria and Firmicutes. Although the most prevalent OTUs (Paracoccus, Methyloversatilis, Brevundimonas, Porphyrobacter, Gp4, Mycobacterium, Hyphomicrobium, Corynebacterium and Clostridium) were shared by all farms, each farm formed a unique microbial pattern. Some known potential human and livestock pathogens were found to be closely related to the OTUs found in this study. This work demonstrates the presence of biofilm in dairy cooling systems which may potentially serve as a live source for microbial pathogens.


Subject(s)
Air Conditioning , Animal Husbandry/instrumentation , Biofilms , Microbiota , Dairying/instrumentation , Israel
16.
Article in English | MEDLINE | ID: mdl-25360421

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's Disease in ruminants. This enteritis has significant economic impact and worldwide distribution. Vaccination is one of the most cost effective infectious disease control measures. Unfortunately, current vaccines reduce clinical disease and shedding, but are of limited efficacy and do not provide long-term protective immunity. Several strategies have been followed to mine the MAP genome for virulence determinants that could be applied to vaccine and diagnostic assay development. In this study, a comprehensive mutant bank of 13,536 MAP K-10 Tn5367 mutants (P > 95%) was constructed and screened in vitro for phenotypes related to virulence. This strategy was designated to maximize identification of genes important to MAP pathogenesis without relying on studies of other mycobacterial species that may not translate into similar effects in MAP. This bank was screened for mutants with colony morphology alterations, susceptibility to D-cycloserine, impairment in siderophore production or secretion, reduced cell association, and decreased biofilm and clump formation. Mutants with interesting phenotypes were analyzed by PCR, Southern blotting and DNA sequencing to determine transposon insertion sites. These insertion sites mapped upstream from the MAP1152-MAP1156 cluster, internal to either the Mod operon gene MAP1566 or within the coding sequence of lsr2, and several intergenic regions. Growth curves in broth cultures, invasion assays and kinetics of survival and replication in primary bovine macrophages were also determined. The ability of vectors carrying Tn5370 to generate stable MAP mutants was also investigated.


Subject(s)
Biological Specimen Banks , DNA Transposable Elements , DNA, Bacterial , Mutation , Mycobacterium avium subsp. paratuberculosis/genetics , Paratuberculosis/microbiology , Animals , Cattle , Cycloserine/pharmacology , Macrophages/immunology , Macrophages/microbiology , Microbial Sensitivity Tests , Microbial Viability/immunology , Mutagenesis, Insertional , Mycobacterium avium subsp. paratuberculosis/drug effects , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/immunology , Phenotype
17.
Vet Immunol Immunopathol ; 152(1-2): 168-75, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23073139

ABSTRACT

Mastitis-inflammation of the mammary gland is an important disease affecting dairy animals worldwide. The disease is caused by mammary pathogenic bacteria, and Escherichia coli is frequently implicated. Intramammary challenge with bacterial LPS is sufficient to elicit the disease. However, using toll-like receptor (TLR) 4-deficient mice, we previously found that mammary pathogenic E. coli is still able to elicit neutrophil recruitment, indicating the presence of bacterial virulence factors other than LPS. To date, no specific virulence factors have been identified in E. coli isolates associated with mastitis, and other microbe-associated molecular patterns (MAMPs), such as bacterial lipoproteins, are prime candidates. The synthetic analog of bacterial lipopeptides, Pam3CSK4, is recognized by TLR2 and mimics the proinflammatory properties of triacylated lipoproteins of Gram-negative bacteria. The aim of the present work was to determine the role of bacterial lipoproteins recognized by TLR2 on mammary cells as virulence factors in the mammary gland. Using the murine mastitis model, we previously showed that following intramammary LPS challenge, neutrophil recruitment is strictly dependent on alveolar macrophages. Thus, the role of alveolar macrophages in the response to intramammary bacterial lipoprotein challenge was also studied. Here, Pam3CSK4 infusion induced mastitis in wild-type mice, but not in TLR2-deficient mice. The wild-type phenotype was not restored by adoptive transfer of TLR2-expressing macrophages into the alveolar milk space of TLR2-deficient mice, indicating that cells other than alveolar macrophages are essential for Pam3CSK4/TLR2 signaling. In contrast to the Pam3CSK4 treatment, infection with E. coli P4 resulted in inflammation, even in the absence of TLR2 signaling, indicating that lipoproteins are sufficient, but not essential virulence factors in the pathogenesis of the intact bacteria. However, in the absence of TLR2, the infecting E. coli P4 invaded the alveolar epithelial cells and formed intracellular bacterial communities, indicating that intact lipoprotein/TLR2 signaling is essential to restricting bacterial invasion.


Subject(s)
Escherichia coli Infections/veterinary , Escherichia coli/immunology , Mastitis/veterinary , Neutrophil Infiltration/immunology , Toll-Like Receptor 2/immunology , Animals , Cell Line , Colony Count, Microbial , Disease Models, Animal , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Female , Macrophages , Mastitis/immunology , Mastitis/microbiology , Mice , Mice, Knockout , Microscopy, Confocal , Signal Transduction
18.
Vet Res ; 43: 1, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22236452

ABSTRACT

Lumpy skin disease (LSD) is a severe viral disease of cattle. Circumstantial evidence suggests that the virus is transmitted mechanically by blood-feeding arthropods. We compared the importance of transmission via direct and indirect contact in field conditions by using mathematical tools. We analyzed a dataset collected during the LSD outbreak in 2006 in a large dairy herd, which included ten separated cattle groups. Outbreak dynamics and risk factors for LSD were assessed by a transmission model. Transmission by three contact modes was modelled; indirect contact between the groups within a herd, direct contact or contact via common drinking water within the groups and transmission by contact during milking procedure. Indirect transmission was the only parameter that could solely explain the entire outbreak dynamics and was estimated to have an overall effect that was over 5 times larger than all other possible routes of transmission, combined. The R0 value induced by indirect transmission per the presence of an infectious cow for 1 day in the herd was 15.7, while the R0 induced by direct transmission was 0.36. Sensitivity analysis showed that this result is robust to a wide range of assumptions regarding mean and standard deviation of incubation period and regarding the existence of sub-clinically infected cattle. These results indicate that LSD virus spread within the affected herd could hardly be attributed to direct contact between cattle or contact through the milking procedure. It is therefore concluded that transmission mostly occurs by indirect contact, probably by flying, blood-sucking insects. This has important implications for control of LSD.


Subject(s)
Disease Outbreaks/veterinary , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/transmission , Lumpy skin disease virus/physiology , Models, Biological , Animals , Cattle , Female , Incidence , Israel , Lumpy Skin Disease/virology , Microscopy, Electron/veterinary , Polymerase Chain Reaction/veterinary , Risk Factors
19.
Dis Model Mech ; 4(1): 86-94, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20959635

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important cause of diarrhea, hemorrhagic colitis and hemolytic uremic syndrome in humans worldwide. The two major virulence determinants of EHEC are the Shiga toxins (Stx) and the type III secretion system (T3SS), including the injected effectors. Lack of a good model system hinders the study of EHEC virulence. Here, we investigated whether bovine and human intestinal xenografts in SCID mice can be useful for studying EHEC and host tissue interactions. Fully developed, germ-free human and bovine small intestine and colon were established by subcutaneous transplantation of human and bovine fetal gut into SCID mice. Xenografts were allowed to develop for 3-4 months and thereafter were infected by direct intraluminal inoculation of Stx-negative derivatives of EHEC O157:H7, strain EDL933. The small intestine and colon xenografts closely mimicked the respective native tissues. Upon infection, EHEC induced formation of typical attaching and effacing lesions and tissue damage that resembled hemorrhagic colitis in colon xenografts. By contrast, xenografts infected with an EHEC mutant deficient in T3SS remained undamaged. Furthermore, EHEC did not attach to or damage the epithelium of small intestinal tissue, and these xenografts remained intact. EHEC damaged the colon in a T3SS-dependent manner, and this model is therefore useful for studying the molecular details of EHEC interactions with live human and bovine intestinal tissue. Furthermore, we demonstrate that Stx and gut microflora are not essential for EHEC virulence in the human gut.


Subject(s)
Bacterial Adhesion , Colitis/microbiology , Enterohemorrhagic Escherichia coli/cytology , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Gastrointestinal Hemorrhage/complications , Intestine, Small/transplantation , Animals , Cattle , Cell Differentiation , Colitis/complications , Colitis/pathology , Colon/microbiology , Colon/pathology , Colon/transplantation , Colon/ultrastructure , Disease Models, Animal , Epithelial Cells/microbiology , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Escherichia coli Infections/complications , Escherichia coli Proteins/metabolism , Fetus , Gastrointestinal Hemorrhage/pathology , Humans , Intestine, Small/microbiology , Intestine, Small/pathology , Intestine, Small/ultrastructure , Mice , Morphogenesis , Organ Specificity , Transplantation, Heterologous
20.
Vet J ; 190(1): 77-83, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21093328

ABSTRACT

An outbreak of epizootic haemorrhagic disease virus (EHDV) in cattle in Israel in 2006 enabled a comparison of the spatial distribution of epidemic exposure to EHDV with that of exposure to bluetongue virus (BTV), which is endemic in the country. The seroprevalence of both viruses was examined in 1650 serum samples collected from 139 farms representative of the spatial distribution of dairy cattle in Israel. A significant association between exposure to EHDV and BTV was demonstrated in both univariate and multivariate analyses. Recent exposure to BTV and EHDV (demonstrated by seroprevalence in calves) was clustered in different geographical locations, indicating that the two viruses had different patterns of spread, that of EHDV being influenced by winds and terrain barriers and that of BTV by herd immunity.


Subject(s)
Bluetongue virus , Bluetongue/epidemiology , Cattle Diseases/transmission , Disease Outbreaks/veterinary , Disease Transmission, Infectious/veterinary , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections/veterinary , Animals , Bluetongue/transmission , Cattle , Cattle Diseases/epidemiology , Dairying , Female , Israel/epidemiology , Prevalence , Reoviridae Infections/epidemiology , Reoviridae Infections/transmission , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...