Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Transl Med ; 10(24): 1327, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36660641

ABSTRACT

Background: There is a lack of effective drugs for the treatment of coronary heart disease (CHD). Sedum aizoon L (SL) has multiple effects, and there is no report on CHD in SL at present. The aim of this study is to explore the mechanisms of action of SL in the treatment of CHD based on network pharmacology and molecular docking technology. Methods: The targets and active ingredients of SL were screened using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and CHD-related targets were obtained by searching GeneCards and DisGeNet databases. The intersection of LS active ingredient targets and CHD targets was used to construct a "drug-ingredient-disease-target" network using the Cytoscape software. The STRING database was used to construct a protein-protein interaction (PPI) network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Key targets and core active ingredients were selected and molecular docking was performed using the AutoDock software. Results: According to the predicted results, a total of 134 corresponding target genes for LS, 12 active components, 1,704 CHD-related targets, and 52 intersecting targets were obtained. GO function and KEGG pathway analysis showed that the key targets were involved with signal transducer and activator of transcription 3 (STAT3), tumor protein p53 (TP53), and vascular endothelial growth factor A (VEGFA). The molecular docking results showed that the key targets bound to the important active ingredients in a stable conformation. The core active ingredients of LS in the treatment of CHD were determined to be ursolic acid, myricetin, and beta-sitosterol. Conclusions: SL may act on targets such as STAT3, TP53, and VEGFA through tumor necrosis factor (TNF) signaling pathway, interleukin 17A (IL-17A) signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and other related pathways, thereby playing a role in preventing and treating CHD.

2.
Ann Transl Med ; 9(17): 1381, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733933

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is the most common hematological malignancy in adult patients. Ferroptosis-related signatures have been shown to act as regulators of the progression of multiple cancer types, but the role of ferroptosis in AML remains to be elucidated. We performed the present study to preliminarily investigate the roles of ferroptosis-related genes (FRGs) in AML. METHODS: The transcriptome data of AML patients was downloaded from The Cancer Genome Atlas (TCGA) and the transcriptome data of normal samples was obtained from the Genotype-Tissue Expression (GTEx) database. FRGs were selected via public articles. Expression levels of FRGs between AML and normal samples were analyzed. The prognostic model based on FRGs was constructed via lasso regression. The expression levels and prognostic role of FRGs were identified from the risk model. We also performed validation experiments to verify the expression levels of the final selected genes via immunohistochemistry, polymerase chain reaction (PCR), and RNA-seq. Finally, we explored the associations between immune infiltration, drug sensitivity, and the selected FRGs. RESULTS: The transcriptome data of 151 AML samples were retrieved from TCGA and 70 bone marrow normal samples were retrieved from the GTEx database. Additionally, 23 FRGs were collected from the published articles. There were 22 differentially expressed FRGs, and among them, dipetidyl peptidase-4 (DPP4) (P= 0.011, HR =1.504), GPX4 (P=0.055, HR =1.569), LPCAT3 (P<0.001, HR =2.243), SLC7A11 (P=0.012, HR =2.243), and transferrin receptor (TFRC) (P=0.029, 0.774) had a significant influence on the prognosis of AML patients via lasso regression. The area under the curve (AUC) values of the 1-, 3-, and 5-year receiver operating characteristic (ROC) curves of the FRG signatures indicated that this model is novel and effective method for predicting the prognosis of AML patients. DPP4 (P<0.001) was overexpressed while LPCAT3 (P<0.001), TFRC (P<0.001), GPX4 (P<0.001), and SLC7A11 (P<0.001) were downregulated, further validation experiment results indicated that DPP4 was significantly downregulated but TFRC was upregulated in AML samples. Dysregulation of DPP4 and TFRC influence numbers of chemotherapy regimens sensitivity. CONCLUSIONS: DPP4 and TFRC act as biomarkers for predicting and diagnosing AML, and their expression levels also have significant correlations with drug resistance in AML.

SELECTION OF CITATIONS
SEARCH DETAIL
...