Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 14(1): 77, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28407787

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) is the leading cause of liver cirrhosis and hepatocellular carcinoma in Asia and Africa. Existing antivirals cannot cure HBV or eliminate risk of hepatocellular carcinoma. Glucose-regulated protein 78 (GRP78) can inhibit HBV replication, but promote virion secretion and hepatocellular cancer cell invasion. For these reasons, the overall effect of GRP78 on HBV production and whether to utilize the HBV replication-inhibitory effect of GRP78 up-regulation or the hepatocellular cancer cell invasion-inhibitory effect of its down-regulation were further investigated in order to improve the efficacy of current antiviral therapy. METHODS: GRP78 regulations in HepG2.2.15 cells were conducted by transfections of expressing vector and small interfering RNA, respectively. The changes in HBV replication, hepatitis B e antigen (HBeAg) synthesis and hepatoma cell motility were monitored. RESULTS: GRP78 overall decreased HBV production due to its HBV replication-inhibitory effect time-dependently overwhelming virion secretion-promoting effect in HepG2.2.15 cells. Unlike the parental cells (HepG2), HepG2.2.15 cells demonstrated decreased expressions of the major genes in the interferon-ß1-dependent pathway. Moreover, the expressions of these genes were not affected by GRP78 regulations. However, GRP78 was found to inhibit HBeAg secretion and to increase the retro-transportation of capsid assembly-interfering HBeAg precursor from the endoplasmic reticulum into the cytosol where new viral nucleocapsids formed. Furthermore, GRP78 overexpression promoted wound healing process (the motility) of HepG2.2.15 cells. In contrast, GRP78 knockdown enhanced HBV replication and HBeAg secretion, but they were abolished by entecavir and furin inhibitor, respectively. CONCLUSIONS: GRP78 mainly demonstrates anti-HBV effects, reducing HBV production and HBeAg secretion. With due regard to the hepatocellular cancer invasion risk of the overexpression and the rectifiability of the unpleasant effects of the knockdown, GRP78 down-regulation may be more suitable to serve as an additive strategy to cover the hepatocellular cancer prevention shortage of current antiviral therapy in the future.


Subject(s)
Cell Movement , Heat-Shock Proteins/metabolism , Hepatitis B virus/growth & development , Hepatocytes/physiology , Hepatocytes/virology , Cell Migration Assays , Endoplasmic Reticulum Chaperone BiP , Gene Expression , Gene Knockdown Techniques , Heat-Shock Proteins/genetics , Hep G2 Cells , Hepatitis B e Antigens/analysis , Hepatitis B virus/immunology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/prevention & control , Liver Neoplasms/virology , Virus Replication
2.
Virol J ; 11: 165, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25224377

ABSTRACT

BACKGROUND: The antiviral therapy of chronic hepatitis B virus (HBV) infection pursues the dual goals, virological response (undetectable serum HBV DNA) and hepatitis B e antigen (HBeAg) serological response (serum HBeAg loss/seroconversion). It is relatively difficult, however, to realize the serological response, especially for nucleotide/nucleoside analogs. Furin, a proprotein convertase, is involved in HBeAg maturation. The suppression of furin using inhibitors accordingly reduces HBeAg secretion, but possibly enhances HBV replication. For these reasons, the strategy based on the combination of nucleoside analog entecavir (ETV) and furin inhibitors to inhibit HBV replication and HBeAg secretion simultaneously were studied here. METHODS: The suppression of furin was performed using inhibitors decanoyl-RVKR-chloromethylketone (CMK) and hexa-D-arginine (D6R) or the expression of furin inhibitory prosegment. The influence of furin suppression on HBV replication and the effect of CMK combined with nucleoside analog entecavir (ETV) on HBV replication and HBeAg secretion was investigated in HepG2.2.15 cells. HBeAg level in media was detected using enzyme-linked immunosorbent assay. Intracellular viral antigens and HBV DNA were detected using Western and Southern blotting analyses, respectively. RESULTS: CMK, D6R and the expression of inhibitory prosegment all significantly reduced HBeAg secretion, but only CMK enhance HBV replication. Concordantly, only CMK post-transcriptionally accumulated cytosolic HBV replication-essential hepatitis B core antigen (HBcAg). The HBcAg-accumulating effect of CMK was further found to be resulted from its redundant inhibitory effect on the trypsin-like activity of cellular proteasomes that are responsible for HBcAg degradation. Moreover, the viral replication-enhancing effect of CMK was abrogated by ETV and ETV combined with CMK reduced HBV replication and HBeAg secretion simultaneously. CONCLUSION: The suppression of furin itself does not enhance HBV replication. Nucleotide/nucleoside analogs combined with furin inhibitors may be a potential easy way to realize the dual goals of the antiviral therapy for chronic hepatitis B in the future.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Furin/antagonists & inhibitors , Guanine/analogs & derivatives , Hepatitis B e Antigens/metabolism , Hepatitis B virus/drug effects , Oligopeptides/pharmacology , Virus Replication/drug effects , Amino Acid Chloromethyl Ketones/administration & dosage , Antigens, Viral/isolation & purification , Antigens, Viral/metabolism , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Furin/metabolism , Gene Expression Regulation/physiology , Gene Expression Regulation, Viral/drug effects , Guanine/administration & dosage , Guanine/pharmacology , Hep G2 Cells , Hepatitis B e Antigens/genetics , Hepatitis B virus/physiology , Humans
3.
Neuroscience ; 169(2): 882-92, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20466037

ABSTRACT

The mammalian main olfactory bulb (MOB) receives a dense noradrenergic innervation from the pontine nucleus locus coeruleus that is important for neonatal odor preference learning and odor processing in mature animals. Modulation of GABAergic granule cells (GCs) is thought to play a key role in the net functional impact of norepinephrine (NE) release in the MOB, yet there are few direct studies of the influence of NE on these cells. In the present study we investigated noradrenergic modulation of GC excitability using electrophysiological approaches in rat MOB slices. A moderate concentration of NE (10 microM) and the alpha1 receptor agonist phenylephrine (10 microM) depolarized and increased spontaneous or current injection-evoked spiking in GCs. By contrast, low NE concentrations (0.1-1.0 microM) or the alpha2 receptor agonist clonidine (Clon, 10 microM) hyperpolarized and decreased the discharge of GCs. The effects of NE (10 microM) were blocked by antagonism of alpha1 and alpha2 receptors. Inhibitory effects of low NE concentrations were blocked or converted to excitatory responses by alpha2 receptor blockade, whereas excitatory effects of the moderate NE concentration were converted to inhibitory responses after alpha1 receptor blockade. NE (10 microM) and phenylephrine elicited inward currents that reversed near the potassium equilibrium potential. The effects of NE and phenylephrine were associated with increased membrane input resistance. Clonidine elicited an outward current associated with decreased membrane input resistance that reversed near the potassium equilibrium potential. These results indicate that alpha1 and alpha2 receptor activation exert opposing effects on GC excitability. Low concentrations of NE acting via alpha2 receptors suppress GC excitability, while higher concentrations of NE acting at alpha1 receptors increase GC excitability. These findings are consistent with recent findings that alpha1 and alpha2 receptor activation increase and decrease, respectively, GABAergic inhibition of mitral cells. The differential affinities of alpha1 and alpha2 noradrenergic receptor subtypes may allow for differential modulation of GABA release and olfactory processing as a function of the level of NE release, which in turn, is regulated by behavioral state.


Subject(s)
Adrenergic alpha-1 Receptor Agonists , Adrenergic alpha-2 Receptor Agonists , Neurons/drug effects , Olfactory Bulb/drug effects , Adrenergic alpha-1 Receptor Antagonists , Adrenergic alpha-2 Receptor Antagonists , Animals , Clonidine/pharmacology , Evoked Potentials/drug effects , Female , In Vitro Techniques , Male , Membrane Potentials/drug effects , Neurons/physiology , Norepinephrine/pharmacology , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Patch-Clamp Techniques , Phenylephrine/pharmacology , Rats , Rats, Sprague-Dawley
4.
J Neurophysiol ; 84(3): 1314-29, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10980005

ABSTRACT

Cell-specific expression of nicotinic acetylcholine receptors (AChRs) was examined using ciliary and choroid neurons isolated from chick ciliary ganglia. At embryonic days 13 and 14 (E13,14) the neurons can be distinguished by size, with ciliary neuron soma diameters exceeding those of choroid neurons by about twofold. Both neuronal populations are known to express two major AChR types: alpha3*-AChRs recognized by mAb35, that contain alpha3, alpha5, beta4, and occasionally beta2 subunits, and alpha-bungarotoxin (alphaBgt)-AChRs recognized and blocked by alphaBgt, that contain alpha7 subunits. We found that maximal whole cell current densities (I/C(m)) mediated by alphaBgt-AChRs were threefold larger for choroid compared with ciliary neurons, while alpha3*-AChR current densities were similar in the two populations. Different densities of total cell-surface alphaBgt-AChRs could not explain the distinct alphaBgt-AChR response densities associated with ciliary and choroid neurons. Ciliary ganglion neurons display abundant [(125)I]-alphaBgt binding ( approximately 10(6) sites/neuron), but digital fluorescence measurements revealed equivalent site densities on both populations. AChR channel classes having single-channel conductances of approximately 30, 40, 60, and 80 pS were present in patches excised from both ciliary and choroid neurons. Treating the neurons with alphaBgt selectively abolished the 60- and 80-pS events, identifying them as arising from alphaBgt-AChRs. Kinetic measurements revealed brief open and long closed durations for alphaBgt-AChR channel currents, predicting a very low probability of being open (p(o)) when compared with 30- or 40-pS alpha3*-AChR channels. None of the channel parameters associated with the 60- and 80-pS alphaBgt-AChRs differed detectably, however, between choroid and ciliary neurons. Instead calculations based on the combined whole cell and single-channel results indicate that choroid neurons express approximately threefold larger numbers of functional alphaBgt-AChRs (N(F)) per unit area than do ciliary neurons. Comparison with total surface [(125)I]-alphaBgt-AChR sites (N(T)), reveals that N(F)/N(T) << 1 for both neuron populations, suggesting that "silent" alphaBgt-AChRs predominate. Choroid neurons may therefore express a higher density of functional alphaBgt-AChRs by recruiting a larger fraction of receptors from the silent pool than do ciliary neurons.


Subject(s)
Bungarotoxins/pharmacology , Choroid/innervation , Ciliary Body/innervation , Ganglia, Parasympathetic/metabolism , Neurons/metabolism , Receptors, Cholinergic/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Axons/metabolism , Binding Sites/drug effects , Cell Size/physiology , Cells, Cultured , Chick Embryo , Dose-Response Relationship, Drug , Fluorescent Dyes , Ganglia, Parasympathetic/cytology , Ion Channels/metabolism , Neurons/classification , Neurons/cytology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Patch-Clamp Techniques , Reaction Time/drug effects , Receptors, Cell Surface , Receptors, Cholinergic/classification , Receptors, Cholinergic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...