Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 34(5): 793-808, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36799882

ABSTRACT

SIGNIFICANCE STATEMENT: CKD is accompanied by abnormal inflammation, which contributes to progressive loss of functional renal tissue and accelerated cardiovascular disease. Although studies have documented that dysregulation of monocyte maturation and function is associated with CKD and its complications, it is not well characterized. This study reveals that a distinctive human monocyte subtype with high propensity for releasing proinflammatory mediators and activating endothelial cells is increased in adults with CKD compared with adults with high cardiovascular risk and normal kidney function. It also demonstrates that human monocyte adhesion to endothelial layers and responses to specific inflammatory migration signals are enhanced in CKD. These findings offer insights into the mechanisms of CKD-associated intravascular and localized inflammation and may suggest potential targets for therapeutic interventions. BACKGROUND: Cardiovascular disease (CVD) in patients with CKD is associated with increased circulating intermediate monocytes (IMs). Dysregulation of monocyte maturation and function is associated with CKD and its complications, but it is incompletely characterized. METHODS: To explore monocyte repertoire abnormalities in CKD, we studied properties of monocyte subpopulations, including IM subpopulations distinguished by HLA-DR expression level, in individuals with or without CKD. Using flow cytometry, we profiled monocyte populations in blood samples from adults with CKD, healthy volunteers (HVs), and patient controls (PCs) with high CVD risk. Monocyte subpopulations were also derived from single-cell RNA-sequencing profiles of paired blood and biopsy samples from kidney transplant recipients. We quantified intracellular cytokine production, migration, and endothelial adhesion in ex vivo assays of PBMCs. RESULTS: Of four predefined blood monocyte subpopulations, only HLA-DR hi IMs were increased in individuals with CKD compared with HVs and PCs. In HVs and patients with CKD, LPS-stimulated HLA-DR hi IMs isolated from blood produced higher amounts of TNF and IL-1 ß than other monocyte populations. Single-cell analysis revealed four monocyte clusters common to blood and kidneys, including an HLA-DR hi IM-like cluster that was enriched in kidneys versus blood. Migration toward CCL5 and CX3CL1 and adhesion to primary endothelial cell layers were increased in monocyte subpopulations in individuals with CKD compared with HVs. Monocyte adhesion to endothelial cells was partly dependent on CX3CR1/CX3CL1 interaction. CONCLUSIONS: CKD is associated with an increased number of a distinctive proinflammatory IM subpopulation and abnormalities of monocyte migration and endothelial adhesion. Dysregulated monocyte maturation and function may represent targetable factors contributing to accelerated CVD in CKD.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Adult , Humans , Monocytes , Endothelial Cells/metabolism , Cardiovascular Diseases/etiology , HLA-DR Antigens , Inflammation/pathology
2.
Kidney360 ; 2(8): 1225-1239, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34849485

ABSTRACT

BACKGROUND: We investigated the predictive value of 11 serum biomarkers for renal and mortality end points in people with CKD. METHODS: Adults with CKD (n=139) were enrolled from outpatient clinics between February 2014 and November 2016. Biomarker quantification was performed using two multiplex arrays on a clinical-grade analyzer. Relationships between biomarkers and renal and mortality end points were investigated by random forests and Cox proportional hazards regression. RESULTS: The cohort was 56% male. The mean age was 63 years and median (IQR) CKD-EPI eGFR was 33 (24-51) ml/min per BSA. A total of 56 (40%) people developed a composite end point defined as ≥40% decline in eGFR, doubling of serum creatinine, RRT, or death over median (IQR) follow-up of 5.4 (4.7-5.7) years. Prediction of the composite end point was better with random forests trained on serum biomarkers compared with clinical variables (area under the curve of 0.81 versus 0.78). The predictive performance of biomarkers was further enhanced when considered alongside clinical variables (area under the curve of 0.83 versus 0.81 for biomarkers alone). Patients (n=27, 19%) with high soluble TNF receptor-1 (≥3 ng/ml) and neutrophil gelatinase-associated lipocalin (≥156 ng/ml), coupled with low complement 3a des-arginine (<2368 ng/ml), almost universally (96%) developed the composite renal and mortality end point. C-reactive protein (adjusted hazard ratio, 1.4; 95% CI, 1.1 to 1.8), neutrophil gelatinase-associated lipocalin (adjusted hazard ratio, 2.8; 95% CI, 1.3 to 6.1) and complement 3a desarginine (adjusted hazard ratio, 0.6; 95% CI, 0.4 to 0.96) independently predicted time to the composite end point. CONCLUSIONS: Outpatients with the triad of high soluble TNF receptor-1 and neutrophil gelatinase-associated lipocalin coupled with low complement 3a des-arginine had high adverse event rates over 5-year follow-up. Incorporation of serum biomarkers alongside clinical variables improved prediction of CKD progression and mortality. Our findings require confirmation in larger, more diverse patient cohorts.


Subject(s)
Renal Insufficiency, Chronic , Adult , Biomarkers , Creatinine , Disease Progression , Female , Humans , Kidney , Male , Middle Aged , Renal Insufficiency, Chronic/diagnosis
3.
Oncoimmunology ; 10(1): 1859263, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33552684

ABSTRACT

Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide's immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.


Subject(s)
Multiple Myeloma , ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal/pharmacology , Cyclophosphamide/pharmacology , Humans , Macrophages , Multiple Myeloma/drug therapy , Phagocytosis , Tumor Microenvironment
4.
Cell Death Dis ; 11(1): 12, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31907350

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Cell Death Dis ; 10(9): 622, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31417078

ABSTRACT

The inflammasome is a multiprotein complex assembled in response to Pathogen Associated Molecular Patterns (PAMPs) and Danger Associated Molecular Patterns (DAMPs). Inflammasome activation occurs through a two-step mechanism, with the first signal facilitating priming of inflammasome components while the second signal triggers complex assembly. Once assembled, the inflammasome recruits and activates pro-caspase-1, which in turn processes pro-interleukin (IL)-18 and pro-IL-1ß into their bio-active forms. Owing to its key role in the regulation of innate immune responses, the inflammasome has emerged as a therapeutic target for the treatment of inflammatory conditions. In this study we demonstrate that IRE1α, a key component of the Unfolded Protein Response, contributes to assembly of the NLRP3 inflammasome. Blockade of IRE1α RNase signaling lowered NLRP3 inflammasome assembly, caspase-1 activation and pro-IL-1ß processing. These results underscore both the importance and potential therapeutic relevance of targeting IRE1α signaling in conditions of excessive inflammasome formation.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Inflammasomes/metabolism , Interleukin-1/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Precursors/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Humans , Inflammasomes/drug effects , Lipopolysaccharides/pharmacology , Nigericin/pharmacology , Signal Transduction , THP-1 Cells , Transfection
6.
Cancer Immunol Res ; 6(11): 1426-1441, 2018 11.
Article in English | MEDLINE | ID: mdl-30228206

ABSTRACT

Stromal cells of mesenchymal origin reside below the epithelial compartment and provide structural support in the intestine. These intestinal stromal cells interact with both the epithelial cell compartments, as well as infiltrating hematopoietic immune cells. The importance of these cells in regulating immune homeostasis during inflammation is well recognized. However, little is known about their function and phenotype in the inflammatory tumor microenvironment. Using a syngeneic, immunogenic model of colorectal cancer, we showed that TNFα-initiated inflammatory signaling in CT26 colorectal cancer cells selectively induced PD-L1 expression in stromal cells. Using CD274 shRNA and antibody-mediated approaches, we showed that stromal cell PD-L1 potentiated enhanced immunosuppression, characterized by inhibition of activated CD8+ granzyme B-secreting T cells in vitro, and the inhibition of CD8+ effector cells was associated with enhanced tumor progression. Stromal cell immunosuppressive and tumor-promoting effects could be reversed with administration of anti-PD-1 in vivo We validated our findings of stromal cell CD274 expression in two cohorts of clinical samples and also observed PD-L1 induction on human stromal cells in response to exposure to the inflammatory secretome from human colon cancer cells, irrespective of microsatellite instability. Collectively, our data showed that tumor-associated stromal cells support T-cell suppression by PD-L1 induction, which is dependent on colon cancer inflammatory signaling. Our findings reveal a key role of mesenchymal stromal cells PD-L1 in suppression of CD8+ antitumor immune responses and potentiation of colorectal cancer progression. Cancer Immunol Res; 6(11); 1426-41. ©2018 AACR.


Subject(s)
B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Stromal Cells/immunology , Animals , B7-H1 Antigen/genetics , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Humans , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Stromal Cells/metabolism , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
7.
Front Immunol ; 9: 2845, 2018.
Article in English | MEDLINE | ID: mdl-30619252

ABSTRACT

Chronic kidney disease (CKD) affects 11-13% of the world's population and greatly increases risk of atherosclerotic cardiovascular disease (ASCVD) and death. It is characterized by systemic inflammation and disturbances in the blood leukocytes that remain incompletely understood. In particular, abnormalities in the numbers and relative proportions of the three major monocyte subsets-classical, intermediate, and non-classical-are described in CKD and end-stage renal disease. In this study, we characterized absolute numbers of blood leukocyte subtypes in adults with renal function varying from normal to advanced CKD. The primary aim was to identify monocyte subpopulations that associated most closely with current estimated glomerular filtration rate (eGFR) and subsequent rate of eGFR decline. Leucocyte and monocyte populations were enumerated by multi-color flow cytometry of whole blood and peripheral blood mononuclear cell (PBMC) samples from adults with CKD stage 1-5 (n = 154) and healthy adults (n = 33). Multiple-linear regression analyses were performed to identify associations between numbers of leucocyte and monocyte populations and clinical characteristics including eGFR and rate of eGFR decline with adjustment for age and gender. In whole blood, total monocyte and neutrophil, but not lymphocyte, numbers were higher in adults with CKD 1-5 compared to no CKD and were significantly associated with current eGFR even following correction for age. In PBMC, classical and intermediate monocyte numbers were higher in CKD 1-5 but only intermediate monocyte numbers were significantly associated with current eGFR in an age-corrected analysis. When intermediate monocytes were further sub-divided into those with mid- and high-level expression of class II MHC (HLA-DRmid and HLA-DRhi intermediate monocytes) it was found that only DRhi intermediate monocytes were increased in number in CKD 1-5 compared to no CKD and were significantly associated with eGFR independently of age among the total (No CKD + CKD 1-5) study cohort as well as those with established CKD (CKD 1-5 only). Furthermore, blood number of DRhi intermediate monocytes alone proved to be significantly associated with subsequent rate of renal functional decline. Together, our data confirm neutrophil and monocyte subset dysregulation in CKD and identify a distinct subpopulation of intermediate monocytes that is associated with higher rate of loss of kidney function.


Subject(s)
Monocytes , Renal Insufficiency, Chronic , Severity of Illness Index , Adult , Aged , Female , Glomerular Filtration Barrier , Humans , Leukocyte Count , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/physiopathology
8.
Int J Cancer ; 142(10): 2056-2067, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29266277

ABSTRACT

Mesenchymal stem cells (MSCs) are a heterogeneous population of multipotent cells that are capable of differentiating into osteocytes, chondrocytes and adipocytes. Recently, MSCs have been found to home to the tumour site and engraft in the tumour stroma. However, it is not yet known whether they have a tumour promoting or suppressive function. We investigated the interaction between prostate cancer cell lines 22Rv1, DU145 and PC3, and bone marrow-derived MSCs. MSCs were 'educated' for extended periods in prostate cancer cell conditioned media and PC3-educated MSCs were found to be the most responsive with a secretory profile rich in pro-inflammatory cytokines. PC3-educated MSCs secreted increased osteopontin (OPN), interleukin-8 (IL-8) and fibroblast growth factor-2 (FGF-2) and decreased soluble fms-like tyrosine kinase-1 (sFlt-1) compared to untreated MSCs. PC3-educated MSCs showed a reduced migration and proliferation capacity that was dependent on exposure to PC3-conditioned medium. Vimentin and α-smooth muscle actin (αSMA) expression was decreased in PC3-educated MSCs compared to untreated MSCs. PC3 and DU145 education of healthy donor and prostate cancer patient-derived MSCs led to a reduced proportion of FAP+ αSMA+ cells contrary to characteristics commonly associated with cancer associated fibroblasts (CAFs). The migration of PC3 cells was increased toward both PC3-educated and DU145-educated MSCs compared to untreated MSCs, while DU145 migration was only enhanced toward patient-derived MSCs. In summary, MSCs developed an altered phenotype in response to prostate cancer conditioned medium which resulted in increased secretion of pro-inflammatory cytokines, modified functional activity and the chemoattraction of prostate cancer cells.


Subject(s)
Cytokines/metabolism , Cytokines/pharmacology , Mesenchymal Stem Cells/drug effects , Prostatic Neoplasms/metabolism , Adult , Cell Line, Tumor , Cell Movement/drug effects , Culture Media, Conditioned , Humans , Male , Mesenchymal Stem Cells/pathology , Middle Aged , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...