Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 9(10): 3555-64, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19705805

ABSTRACT

Fluorescent defects in noncytotoxic diamond nanoparticles are candidates for qubits in quantum computing, optical labels in biomedical imaging, and sensors in magnetometry. For each application these defects need to be optically and thermodynamically stable and included in individual particles at suitable concentrations (singly or in large numbers). In this Letter, we combine simulations, theory, and experiment to provide the first comprehensive and generic prediction of the size, temperature, and nitrogen-concentration-dependent stability of optically active N-V defects in nanodiamonds.

2.
J Mol Biol ; 377(5): 1357-71, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18329667

ABSTRACT

Sm and Sm-like (Lsm) proteins are core components of the ribonucleoprotein complexes essential to key nucleic acid processing events within the eukaryotic cell. They assemble as polyprotein ring scaffolds that have the capacity to bind RNA substrates and other necessary protein factors. The crystal structure of yeast Lsm3 reveals a new organisation of the L/Sm beta-propeller ring, containing eight protein subunits. Little distortion of the characteristic L/Sm fold is required to form the octamer, indicating that the eukaryotic Lsm ring may be more pliable than previously thought. The homomeric Lsm3 octamer is found to successfully recruit Lsm6, Lsm2 and Lsm5 directly from yeast lysate. Our crystal structure shows the C-terminal tail of each Lsm3 subunit to be engaged in connections across rings through specific beta-sheet interactions with elongated loops protruding from neighbouring octamers. While these loops are of distinct length for each Lsm protein and generally comprise low-complexity polar sequences, several Lsm C-termini comprise hydrophobic sequences suitable for beta-sheet interactions. The Lsm3 structure thus provides evidence for protein-protein interactions likely utilised by the highly variable Lsm loops and termini in the recruitment of RNA processing factors to mixed Lsm ring scaffolds. Our coordinates also provide updated homology models for the active Lsm[1-7] and Lsm[2-8] heptameric rings.


Subject(s)
RNA-Binding Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Magnetic Resonance Spectroscopy , Models, Biological , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , RNA, Fungal/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
3.
J Biol Chem ; 278(19): 17291-8, 2003 May 09.
Article in English | MEDLINE | ID: mdl-12618433

ABSTRACT

Sm and Sm-like proteins are key components of small ribonucleoproteins involved in many RNA and DNA processing pathways. In eukaryotes, these complexes contain seven unique Sm or Sm-like (Lsm) proteins assembled as hetero-heptameric rings, whereas in Archaea and bacteria six or seven-membered rings are made from only a single polypeptide chain. Here we show that single Sm and Lsm proteins from yeast also have the capacity to assemble into homo-oligomeric rings. Formation of homo-oligomers by the spliceosomal small nuclear ribonucleoprotein components SmE and SmF preclude hetero-interactions vital to formation of functional small nuclear RNP complexes in vivo. To better understand these unusual complexes, we have determined the crystal structure of the homomeric assembly of the spliceosomal protein SmF. Like its archaeal/bacterial homologs, the SmF complex forms a homomeric ring but in an entirely novel arrangement whereby two heptameric rings form a co-axially stacked dimer via interactions mediated by the variable loops of the individual SmF protein chains. Furthermore, we demonstrate that the homomeric assemblies of yeast Sm and Lsm proteins are capable of binding not only to oligo(U) RNA but, in the case of SmF, also to oligo(dT) single-stranded DNA.


Subject(s)
Ribonucleoproteins, Small Nuclear/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Binding Sites , DNA/chemistry , DNA/metabolism , Dimerization , Models, Molecular , Protein Binding , RNA/chemistry , RNA/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...