Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Cells Nanomed Biotechnol ; 50(1): 71-80, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35343349

ABSTRACT

Reproductive derangement and metabolic disorders in human immunodeficiency virus (HIV) infected persons require a nanoparticle delivery system to convey antiretroviral drugs to the anatomical sanctuary such as testis. This study investigated the effects of tenofovir disoproxil fumarate (TDF) loaded silver nanoparticles (AgNPs) on the testicular oxidative stress, inflammatory cytokines and histology in male diabetic rats. Thirty-six Sprague-Dawley rats weighing 230 ± 20 g were randomly divided into diabetic and non-diabetic groups (n = 18). Diabetes was induced using the fructose-streptozotocin (Frt-STZ) rat model. Both groups were further divided into three (n = 6) and administered distilled water, TDF, or TDF-AgNP. Results obtained with the TDF-AgNP administration showed a significant increase (p < .05) in the reduced glutathione and catalase levels. Tumour necrosis factor-alpha and interleukin 6 were reduced in diabetic rats administered TDF-AgNP. More so, administration of TDF-AgNP to diabetic rats improved testicular histoarchitecture in diabetic rats. In addition, diabetic rats administered TDF-AgNP showed a significant reduction (p < .05) in blood glucose levels. TDF-AgNP to diabetic rats enhanced testicular antioxidant enzyme, reduced testicular inflammation, and alleviated structural derangements in the testis. Thus, the application of AgNP to deliver TDF may alleviate testicular toxicity and subsequently cater for neglected reproductive dysfunction during the management of HIV infection.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , HIV Infections , Metal Nanoparticles , Animals , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , HIV Infections/drug therapy , Male , Rats , Rats, Sprague-Dawley , Silver/metabolism , Silver/pharmacology , Tenofovir/metabolism , Tenofovir/pharmacology , Testis
2.
Bosn J Basic Med Sci ; 22(4): 569-579, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35122679

ABSTRACT

Tenofovir disoproxil fumarate (TDF) is the highly recommended antiretroviral drug in human immunodeficiency virus management. Although research has shown the neurological and metabolic disorders associated with TDF administration, the effect of TDF-silver nanoparticles conjugate (TDF-AgNPs) on the disorders has not been fully elucidated. Thus, this study evaluated the neuroprotective effects of TDF-AgNPs on ultrastructural and cytoarchitectonic properties of the prefrontal cortex (PFC) in diabetic rats. Forty-two adult male Sprague-Dawley rats (250 ± 13 g) were randomly divided into non-diabetic groups (1-3) and diabetic groups (4-6), each administered distilled water (0.5 ml/100g, p.o), TDF (26.8 mg/kg/bw, p.o) or TDF-AgNPs (6.7 mg/kg, i.p). After eight weeks of administration, cognitive function, oxidative injury and tissue inflammation were evaluated. Also, PFC ultrastructure was observed using transmission electron microscopy, Nissl staining and immunohistochemistry. Diabetic rats administered TDF exhibited cognitive deficits; and increases in blood glucose, malondialdehyde and interleukin-1 beta (IL-1ß) levels, which correlate with decreases in glutathione level, and superoxide dismutase (SOD) and catalase activities. Furthermore, loss of PFC astrocytes and neuronal organelles was observed. Conversely, TDF-AgNPs administration to diabetic rats improved cognitive deficits; and increased glutathione, SOD, and catalase, but reduced PFC malondialdehyde and IL-1ß concentrations. Notably, TDF-AgNPs prevented loss of PFC neurons and astrocytic cells, and morphology aberration of neuronal organelles. This study suggests that TDF-AgNPs attenuated cognitive deficits via silver nanoparticles' antioxidant and anti-inflammatory properties, preventing the loss of PFC astrocytes and neurons. The TDF-AgNPs may be utilized to ameliorate the neurological dysfunction caused by prolonged TDF administration.


Subject(s)
Diabetes Mellitus, Experimental , Metal Nanoparticles , Animals , Male , Rats , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase , Diabetes Mellitus, Experimental/drug therapy , Glutathione/metabolism , Malondialdehyde/metabolism , Metal Nanoparticles/chemistry , Neurocognitive Disorders , Prefrontal Cortex/metabolism , Rats, Sprague-Dawley , Silver/chemistry , Superoxide Dismutase/metabolism , Tenofovir
SELECTION OF CITATIONS
SEARCH DETAIL
...