Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pathol Res Pract ; 253: 155032, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38176306

ABSTRACT

In the spectrum of breast neoplasms, approximately 15 to 20% of all diagnosed cases are triple-negative breast carcinoma. TNBC grows and spreads faster than other invasive breast cancers and has a worse prognosis. The existing therapies and chemotherapeutic drugs have several limitations, so the development of safe and affordable treatment options is currently in demand. Hence, this research focuses on scientifically evaluating the therapeutic anticancer effect of ethyl acetate extract of MSG and its combined efficacy with doxorubicin against TNBC. MSG has shown an IC50 value of 48.40 ± 1.68 µg/ml on the MDA-MB-231 cell line, and the combination of MSG with Dox demonstrated the synergistic effect. Apoptotic changes such as membrane blebbing chromatin condensation were observed in MSG alone and in combination with doxorubicin treatments. Apoptosis was confirmed with Annexin V-FITC/PI staining and increased apoptotic markers such as Cleaved caspase-3 Bax and decreased anti-apoptotic markers Bcl-2 by western blotting. The tumor burden significantly decreased in MSG and combination treatment groups while restoring their body weights. Meanwhile, the Dox-treated group indicated a decreased tumor burden combined with weight loss. The present investigation revealed that MSG and doxorubicin have a synergistic anticancer effect in TNBC.


Subject(s)
Acetates , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Doxorubicin/pharmacology , Apoptosis
2.
Free Radic Res ; 57(4): 308-324, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37523668

ABSTRACT

Accumulating evidence attributes the role of aldose reductase (AR) in modulating ROS and inflammation which are the main factor responsible for cancer progression and drug resistance. Epalrestat is the only AR inhibitor being used in Asian countries. It did not make it to the markets of the USA and Europe due to marginal efficacy as an antioxidant and anti-inflammatory agent owing to difficulty reaching intracellular targets. In our previous studies, we attempted to synthesize the epalrestat analogs and reported that the compound 4-((Z)-5-((Z)-2-Cyano-3-phenylallylidene)-4-oxo-2-thioxothiazolidin-3-yl) benzoic acid named as NARI-29 has potent AR inhibition compared to epalrestat. In the current study, we aimed to find the effect of NARI-29 on ROS-induced cancer progression and TRAIL resistance in colon cancer in vitro models. In the first part of the study, we demonstrated that the NARI-29 has specific AKR1B1 inhibition and superior drug-like properties than epalrestat using bioinformatics tools. In the second part of the study, it was proven that NARI-29 has induced the hydrogen peroxide-triggered TRAIL-induced apoptosis in the colon cancer cells via modulating the AKR1B1/4HNE/FOXO3a/DR axis. The selective cytotoxicity of NARI-29 (10-fold) compared to epalrestat (4-fold) toward cancer cells is due to its differential ROS regulation and anti-inflammatory activities. Altogether, these data show that NARI-29 may be a potential candidate for AR inhibitors, which will be used to prevent colon cancer progression and as adjuvant therapy for preventing TRAIL resistance.


AKR1B1 is over-expressed in advanced-stage human colon cancer tissuesAKR1B1 mediates resistance to H2O2 and TRAIL in human CRC cell linesA co-activation loop exists between NF-κB and AKR1B1 in CRC cell lines to counteract ROSEstablishing epalrestat analog, NARI-29 (4-((Z)-5-((Z)-2-Cyano-3-phenylallylidene)-4-oxo-2-thioxothiazolidin-3-yl) benzoic acid) as potent anti-colon cancer agentsNARI-29 induced selective apoptosis in colon cancer cells by differentially modulating the ROS and sensitizing TRAIL.


Subject(s)
Colonic Neoplasms , NF-kappa B , Humans , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/pharmacology , Colonic Neoplasms/drug therapy , Apoptosis , Enzyme Inhibitors/pharmacology , Receptors, Death Domain , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Cell Line, Tumor , Aldehyde Reductase/pharmacology
3.
Food Biosci ; 50: 101977, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36059903

ABSTRACT

The novel enveloped ß-coronavirus SARS-CoV-2 (COVID-19) has offered a surprising health challenge all over the world. It develops severe pneumonia leading to acute respiratory distress syndrome (ARDS). Like SARS-COV-2, other encapsulated viruses like HIV, HSV, and influenza have also offered a similar challenge in the past. In this regard, many antiviral drugs are being explored with varying degrees of success to combat the associated pathological conditions. Therefore, upon scientific validation & development, these antiviral phytochemicals can attain a futuristic nutraceutical prospect in managing different encapsulated viruses. Houttuynia cordata (HC) is widely reported for activities such as antioxidant, anti-inflammatory, and antiviral properties. The major antiviral bioactive components of HC include essential oils (methyl n-nonyl ketone, lauryl aldehyde, capryl aldehyde), flavonoids (quercetin, rutin, hyperin, quercitrin, isoquercitrin), and alkaloids (norcepharadione B) & polysaccharides. HC can further be explored as a potential nutraceutical agent in the therapy of encapsulated viruses like HIV, HSV, and influenza. The review listed various conventional and green technologies that are being employed to extract potent phytochemicals with diverse activities from the HC. It was indicated that HC also inhibited molecular targets like 3C-like protease (3CLPRO) and RNA-dependent RNA polymerase (RdRp) of COVID-19 by blocking viral RNA synthesis and replication. Antioxidant and hepatoprotective effects of HC have been evident in impeding complications from marketed drugs during antiviral therapies. The use of HC as a nutraceutical is localized within some parts of Southeast Asia. Further technological advances can establish it as a nutraceutical-based functional food against pathogenic enveloped viruses like COVID 19.

4.
ACS Chem Neurosci ; 13(1): 53-68, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34904823

ABSTRACT

NLRP3 activation plays a key role in the initiation and progression of a variety of neurodegenerative diseases. However, understanding the molecular mechanisms involved in the bidirectional signaling required to activate the NLRP3 inflammasomes is the key to treating several diseases. Hence, the present study aimed to investigate the role of lipopolysaccharide (LPS) and hydrogen peroxide (H2O2) in activating NLRP3 inflammasome-driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in in vitro and in vivo models of Parkinson's disease (PD). Initial priming of microglial cells with LPS following treatment with H2O2 induced NF-κB translocation to the nucleus with a robust generation of free radicals that act as signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses the nuclear translocation of NF-κB, enhances PARKIN translocation into the mitochondria, and maintains cellular redox homeostasis in both mouse and human microglial cells that limit NLRP3 inflammasome activation along with processing of active caspase-1, IL-1ß, and IL-18. To further correlate the in vitro study with the in vivo MPTP model, treatment with PA also inhibited the nuclear translocation of NF-κB and downregulated the NLRP3 inflammasome activation. PA administration upregulated various antioxidant enzymes' levels and restored the level of dopamine and other neurotransmitters in the striatum of the mouse brain, subsequently improving the behavioral activities. Therefore, we conclude that NLRP3 inflammasome activation required a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting the NLRP3 inflammasome pathway in PD.


Subject(s)
Inflammasomes , Parkinson Disease , Animals , Dopaminergic Neurons , Hydrogen Peroxide , Mice , Monoterpenes , NLR Family, Pyrin Domain-Containing 3 Protein
5.
Immunol Lett ; 231: 35-42, 2021 03.
Article in English | MEDLINE | ID: mdl-33428992

ABSTRACT

Hispolon (HISP) is a bioactive compound isolated from Phellinu linteus. It has various pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. However, its anti-osteoclastogenic activity has not yet been reported. Hence, in the current study, we have explored the anti-osteoclastogenic activity of HISP and elucidated the molecular mechanisms. HISP inhibited the RANKL induced differentiation of RAW 264.7 cells into osteoclasts in a dose-dependent manner. Mechanistic studies showed that HISP inhibited RANKL-mediated activation of NF-κB and MAPK signaling pathways in osteoclast precursors RAW 264.7 cells. In addition, Hispolon also downregulated the expression of master transcriptional factors essential for osteoclast differentiation, such as NFATc1 and c-FOS. In conclusion, these findings establish molecular mechanisms behind the anti-osteoclastogenic activity of HISP.


Subject(s)
Catechols/pharmacology , Cell Differentiation/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , RANK Ligand/metabolism , Actins/metabolism , Animals , Biomarkers , Catechols/chemistry , Cell Survival/drug effects , Cells, Cultured , Fluorescent Antibody Technique , MAP Kinase Signaling System , Mice , Osteogenesis , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
6.
Assay Drug Dev Technol ; 18(6): 249-260, 2020.
Article in English | MEDLINE | ID: mdl-32941071

ABSTRACT

The main challenging aspect in the management of tuberculosis (TB) diseases is effective alveolar macrophages targeting. Macrophage mannose receptor plays a predominant role in stimulating immune systems by TB pathogen. Our earlier in silico computational studies revealed that O-stearoyl mannose (OSM) possesses a higher affinity with macrophage mannose receptors. Therefore, keeping this in view, we developed OSM with the association of stearic acid and d-mannose as initial reactants by the esterification process. Preliminary confirmation of reaction was assessed with thin-layer chromatography experimentation, whereas further confirmation followed by in vitro characterization with several analytical experimental tools such as fourier transform near-infrared, differential scanning calorimetry, and electrospray ionization-assisted mass spectrometry confirms the formation of the OSM. This synthesized and well-characterized OSM as a ligand was further incubated with surface-engineered lipid nanoarchitectonics to achieve OSM ligand-engineered lipid nanoarchitectonics and earlier explored for its safety study through hemolysis assay and potential in vitro triggering efficiency in human alveolar macrophages (THP-1 cells) to validate its active targeting efficiency. Graphical Abstract [Figure: see text].


Subject(s)
Lipids/chemistry , Macrophages, Alveolar/drug effects , Mannose/pharmacology , Nanostructures/chemistry , Stearic Acids/pharmacology , Tuberculosis/drug therapy , Humans , Ligands , Mannose/chemical synthesis , Mannose/chemistry , Molecular Structure , Nanotechnology , Stearic Acids/chemical synthesis , Stearic Acids/chemistry
7.
Neurochem Int ; 140: 104835, 2020 11.
Article in English | MEDLINE | ID: mdl-32853749

ABSTRACT

Stress and lipopolysaccharide (LPS) animal models are used for screening antidepressants and anxiolytic drugs. However, the lacunae for their combination (Restraint stress; RS and LPS) impacting inflammation, apoptosis and antioxidant signaling have not been explored. The present study investigated RS + LPS-induced neurobehavioral and neurochemical anomalies in hippocampus (HIP) and frontal cortex (FC) of mice. Furthermore, citrus-derived flavanone glycoside (Hesperidin; HSP) neuroprotective ability was also confirmed in this model. Male Balb/c mice were given RS (for 28 days) and LPS (single dose, 0.83 mg/kg, i.p.) on 28th day. RS + LPS challenge caused neurobehavioral deficits in mice as evaluated over elevated plus maze (EPM), open field test (OFT), light-dark box test, tail suspension test (TST), forced swim test (FST), sucrose preference test (SPT). Moreover, RS + LPS caused alteration via enhanced oxido-nitrosative stress, proinflammatory cytokines level (serum, HIP, FC), lower antioxidants (GSH, SOD, CAT), increased IBA-1, GFAP, TLR4/NF-κB, p38MAPK/JNK while decreased Nrf2/BDNF/HO-1 expression in HIP and FC of mice. The 21 days (8-28th day), HSP (50 and 100 mg/kg, p.o.) treatment significantly alleviated the anxiety and depressive-like behavior and reversed neurochemical, histopathological changes. HSP exerted the neuroprotective effect via its anti-inflammatory, anti-apoptotic, antioxidant and neurogenesis potential in treating psychiatric illness alone or associated with other diseases.


Subject(s)
Hesperidin/therapeutic use , NF-E2-Related Factor 2/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Stress, Psychological/drug therapy , Toll-Like Receptor 4/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Chronic Disease , Dose-Response Relationship, Drug , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Hesperidin/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Restraint, Physical/adverse effects , Restraint, Physical/psychology , Stress, Psychological/metabolism , Stress, Psychological/psychology , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Article in English | MEDLINE | ID: mdl-32783625

ABSTRACT

E-cigarettes (eCig) are being considered as an alternative to quit cigarette smoking while their long-term effect on lung pathophysiology are unknown. Maternal eCig-vaping may be promoted and considered as a safer cigarette smoking-replacement during pregnancy thus needing further assessment. Using murine models of in utero vaping and allergic asthma with complementary in vitro experiments we tested whether maternal eCig vaping enhances features of allergic asthma in offspring. Female BALB/c mice were exposed to either eCig vapor (± nicotine) or room air. Female offspring from these mothers were subjected to an ovalbumin (OVA)-induced allergic asthma model. Lung function and airway inflammation was assessed. Tissues were histologically assessed with H&E, Periodic Acid-Schiff and Masson's trichrome. Mitochondrial homeostasis protein expression was measured using immunohistochemistry while human airway smooth muscle (ASM) and Beas-2B cells were used to further measure cellular function and mitochondrial respiration. Allergen-challenge in mice lead to significant increase in airway inflammation, development of airway hyperresponsiveness (AHR) and increase in mucus and airway wall thickening (hallmark features of allergic asthma). Allergic asthma features were significantly enhanced in offspring from eCig (+Nicotine)-exposed mothers and were mainly reliant upon Th2-dependent inflammation with complementary changes in mitochondrial homeostasis. Further, in vitro data demonstrated that eCig (±Nicotine)-exposure impaired airway cell homeostasis and perturbed mitochondrial function. Collectively, maternal eCig vaping enhanced and worsened features of allergic asthma and this could partly be attributed to aberrant mitochondrial function.

9.
ACS Biomater Sci Eng ; 5(9): 4634-4645, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-33448836

ABSTRACT

Full-thickness cutaneous wounds, such as deep burns, are complex wounds that often require surgical interventions. Herein, we show the efficacy of acellular grafts that can be made available off-the-shelf at an affordable cost using silk biomaterials. Silkworm silk fibroin (SF), being a cost-effective and natural biopolymer, provides essential features required for the fabrication of three-dimensional constructs for wound-healing applications. We report the treatment of third-degree burn wounds using a freeze-dried microporous scaffold of Antheraea assama SF (AaSF) functionalized with a recombinant spider silk fusion protein FN-4RepCT (FN-4RC) that holds the fibronectin cell binding motif. In order to examine the healing efficiency of functionalized silk scaffolds, an in vivo burn rat model was used, and the scaffolds were implanted by a one-step grafting procedure. The aim of our work is to investigate the efficacy of the developed acellular silk grafts for treating full-thickness wounds as well as to examine the effect of recombinant spider silk coatings on the healing outcomes. Following 14-day treatment, AaSF scaffolds coated with FN-4RC demonstrated accelerated wound healing when compared to the uncoated counterpart, commercially used DuoDERM dressing patch, and untreated wounds. Histological assessments of wounds over time further confirmed that functionalized silk scaffolds promoted wound healing, showing vascularization and re-epithelialization in the initial phase. In addition, higher extent of tissue remodeling was affirmed by the gene expression study of collagen type I and type III, indicating advanced stage of healing by the silk treatments. Thus, the present study validates the potential of scaffolds of combined silkworm silk and FN-4RC for skin regeneration.

10.
J Ethnopharmacol ; 233: 123-130, 2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30593890

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The flowers of Hibiscus rosa sinensis has array of pharmacological actions. They are used in preparation of herbal decoction and teas, which have been used traditionally to reduce body weight and for its effect on metabolic syndrome. AIM OF THE STUDY: To investigate the anti adipogenic efficacy of major fraction from ethyl acetate extract of the Hibiscus rosa sinensis flower at 25 and 50 µg/mL (HRF 25 and 50 µg/mL) in 3T3-L1 cells and delineate its possible mechanism of action. MATERIALS AND METHODS: Pre adipocyte 3T3-L1 cells were differentiated in the presence and absence of HRF 25 and 50 µg/mL, their lipid accumulation was measured qualitatively by Oil red O staining and quantitatively by triglyceride estimation. Effect on adipolysis was determined, adipogenic and its regulatory gene and protein expression were studied and effect of HRF 25 and 50 µg/mL on AMPK was confirmed in the presence of dorsomorphin. RESULTS: Treatment with HRF 25 and 50 µg/mL activated AMP-activated protein kinase (AMPK) and was found to alleviate triglyceride accumulation significantly (p < 0.001) by 1.6 and 2.3 times respectively in pre adipocytes during differentiation. HRF 25 and 50 µg/mL also nonsignificantly reduced lipolysis which releases free fatty acids, a major contributing factor for insulin resistance. Activation of AMPK by phosphorylation has led to reduced gene and protein expression of adipogenic factors Peroxisome proliferator- activated receptor gamma (PPAR-γ), CCAT/enhancer binding protein alpha (C/EBPα), Sterol regulatory element- binding protein-1c (SREBP-1c) and their targets Fatty acid binding protein 4 (FABP4), Fatty acid synthase (FAS), Perilipin and enhanced Adiponectin expression. Treatment with HRF 25 and 50 µg/mL also resulted in inactivation of Acetyl-CoA carboxylase (ACC) by enhancing ACC phosphorylation, which reduced the levels of malonyl-CoA an allosteric inhibitor of carnitine palmitoyl transferase 1 (CPT1). Enhanced CPT1 levels causes induction of fatty acid ß- oxidation. Effects of HRF were nullified in the presence of AMPK antagonist dorsomorphin. CONCLUSION: In summary, HRF treatments reduced adipogenesis, enhanced factors regulating fatty acid oxidation and this is mediated by AMPK activation. The results conclusively showed anti-obesity potential of HRF and it might be helpful in treatment of associated complications.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipogenesis/drug effects , Anti-Obesity Agents/pharmacology , Hibiscus , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Animals , Cell Differentiation/drug effects , Flowers , Mice
11.
Toxics ; 6(4)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453488

ABSTRACT

Air pollution has become an emerging invisible killer in recent years and is a major cause of morbidity and mortality globally. More than 90% of the world's children breathe toxic air every day. India is among the top ten most highly polluted countries with an average PM10 level of 134 µg/m³ per year. It is reported that 99% of India's population encounters air pollution levels that exceed the World Health Organization Air Quality Guideline, advising a PM2.5 permissible level of 10 µg/m³. Maternal exposure to air pollution has serious health outcomes in offspring because it can affect embryonic phases of development during the gestation period. A fetus is more prone to effects from air pollution during embryonic developmental phases due to resulting oxidative stress as antioxidant mechanisms are lacking at that stage. Any injury during this vulnerable period (embryonic phase) will have a long-term impact on offspring health, both early and later in life. Epidemiological studies have revealed that maternal exposure to air pollution increases the risk of development of airway disease in the offspring due to impaired lung development in utero. In this review, we discuss cellular mechanisms involved in maternal exposure to air pollution and how it can impact airway disease development in offspring. A better understanding of these mechanisms in the context of maternal exposure to air pollution can offer a new avenue to prevent the development of airway disease in offspring.

12.
Int J Pharm ; 528(1-2): 202-214, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28596138

ABSTRACT

Recent reports on the anticancer potential of niclosamide have opened new avenues for anticancer treatment. Niclosamide belongs to the BCS class II, which is indicative of poor solubility and dissolution rate limited absorption. The aim of this study was to improve the dissolution rate of the drug by mesoporous drug delivery system. Porous silica grades (ordered and nonordered) with different pore size, pore volume and surface area were used in the study. The drug was loaded on silica carriers by the solvent evaporation method and characterized by BET surface area analysis, SEM, P-XRD, DSC, and FTIR. A discriminatory dissolution medium was developed for performing the in vitro dissolution of niclosamide. In comparison to the plain drug, all silica based formulations showed improvement in the dissolution rate. Maximum enhancement in the dissolution rate was observed in 1:2 drug:carrier loading ratio when compared to 1:1 ratio. Different properties of mesoporous silica like structural geometry, pore size and microenvironment pH demonstrated a significant impact on drug release from the formulations. Cytotoxicity of the optimized mesoporous formulations of niclosamide was explored in HCT-116, HCT-15, NCI, MDA-MB-231 and A549 cancer cell lines. Nearly 3 fold and 2 fold increase in% cytotoxicity of drug loaded Syloid-244 and Sylysia 350 at 1:2 ratio respectively, were observed when compared to the plain drug.


Subject(s)
Drug Carriers/chemistry , Niclosamide/administration & dosage , Silicon Dioxide/chemistry , Cell Line, Tumor , Humans , Porosity , Solubility
13.
Redox Biol ; 2: 289-95, 2014.
Article in English | MEDLINE | ID: mdl-24494204

ABSTRACT

Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN) remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.


Subject(s)
Antineoplastic Agents/adverse effects , Oxidative Stress , Peripheral Nervous System Diseases/chemically induced , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Biomarkers , Clinical Trials as Topic , Dietary Supplements , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Nerve Degeneration , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Neuralgia/prevention & control , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidation-Reduction , Oxidative Stress/physiology , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/prevention & control , Peroxynitrous Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...