Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 130(2): 184-200, 2024 02.
Article in English | MEDLINE | ID: mdl-38012382

ABSTRACT

BACKGROUND: The eukaryotic elongation factor, EEF1A2, has been identified as an oncogene in various solid tumors. Here, we have identified a novel function of EEF1A2 in angiogenesis. METHODS: Chick chorioallantoic membrane, tubulogenesis, aortic ring, Matrigel plug, and skin wound healing assays established EEF1A2's role in angiogenesis. RESULT: Higher EEF1A2 levels in breast cancer cells enhanced cell growth, movement, blood vessel function, and tubule formation in HUVECs, as confirmed by ex-ovo and in-vivo tests. The overexpression of EEF1A2 could be counteracted by Plitidepsin. Under normoxic conditions, EEF1A2 triggered HIF1A expression via ERK-Myc and mTOR signaling in TNBC and ER/PR positive cells. Hypoxia induced the expression of EEF1A2, leading to a positive feedback loop between EEF1A2 and HIF1A. Luciferase assay and EMSA confirmed HIF1A binding on the EEF1A2 promoter, which induced its transcription. RT-PCR and polysome profiling validated that EEF1A2 affected VEGF transcription and translation positively. This led to increased VEGF release from breast cancer cells, activating ERK and PI3K-AKT signaling in endothelial cells. Breast cancer tissues with elevated EEF1A2 showed higher microvessel density. CONCLUSION: EEF1A2 exhibits angiogenic potential in both normoxic and hypoxic conditions, underscoring its dual role in promoting EMT and angiogenesis, rendering it a promising target for cancer therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Feedback , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism
2.
FASEB J ; 37(3): e22786, 2023 03.
Article in English | MEDLINE | ID: mdl-36786724

ABSTRACT

Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/ß-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/ß-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/ß-catenin signaling in the growth and dissemination of colorectal carcinomas.


Subject(s)
Adherens Junctions , Colonic Neoplasms , Humans , Adherens Junctions/metabolism , Actins/metabolism , beta Catenin/metabolism , Microfilament Proteins/metabolism , Colonic Neoplasms/metabolism , Cadherins/metabolism
3.
PLoS One ; 13(1): e0191377, 2018.
Article in English | MEDLINE | ID: mdl-29342219

ABSTRACT

Eukaryotic translation factors, especially initiation factors have garnered much attention with regards to their role in the onset and progression of different cancers. However, the expression levels and prognostic significance of translation elongation factors remain poorly explored in different cancers. In this study, we have investigated the mRNA transcript levels of seven translation elongation factors in different cancer types using Oncomine and TCGA databases. Furthermore, we have identified the prognostic significance of these factors using Kaplan-Meier Plotter and SurvExpress databases. We observed altered expression levels of all the elongation factors in different cancers. Higher expression of EEF1A2, EEF1B2, EEF1G, EEF1D, EEF1E1 and EEF2 was observed in most of the cancer types, whereas reverse trend was observed for EEF1A1. Overexpression of many factors predicted poor prognosis in breast (EEF1D, EEF1E1, EEF2) and lung cancer (EEF1A2, EEF1B2, EEF1G, EEF1E1). However, we didn't see any common correlation of expression levels of elongation factors with survival outcomes across cancer types. Cancer subtype stratification showed association of survival outcomes and expression levels of elongation factors in specific sub-types of breast, lung and gastric cancer. Most interestingly, we observed a reciprocal relationship between the expression levels of the two EEF1A isoforms viz. EEF1A1 and EEF1A2, in most of the cancer types. Our results suggest that translation elongation factors can have a role in tumorigenesis and affect survival in cancer specific manner. Elongation factors have potential to serve as biomarkers and therapeutic drug targets, yet further study is required. Reciprocal relationship of differential expression between EEF1A isoforms observed in multiple cancer types indicates opposing roles in cancer and needs further investigation.


Subject(s)
Neoplasms/genetics , Peptide Chain Elongation, Translational/genetics , Transcriptome/genetics , Cell Transformation, Neoplastic , Databases, Nucleic Acid , Humans , Kaplan-Meier Estimate , Peptide Chain Elongation, Translational/physiology , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Prognosis , Protein Biosynthesis , Protein Isoforms/metabolism
4.
Methods Protoc ; 1(2)2018 May 31.
Article in English | MEDLINE | ID: mdl-31164562

ABSTRACT

The chick chorioallantoic membrane (CAM) is an extra-embryonic membrane, comprised of a high density of blood and lymphatic vessels. CAM has a dense capillary network and is commonly used to study in vivo angiogenesis and anti-angiogenesis in response to potential biomolecules and drugs. Most of the earlier reported CAM assays described the in-ovo method-where the viability of the embryo is higher, but accessibility to the CAM is limited. Ex-ovo CAM methods were previously described that employed shell-less cultures of chick embryos, but the low viability of embryos reduced the overall robustness of the angiogenesis assays. We described a method (named as cup-CAM method) which is more economical, has better accessibility and has significantly improved the viability of the embryo till advanced developmental stages. We could perform this simple yet useful experimentation with the common tools available in the laboratory. We successfully used the cup-CAM method for showing the paracrine effects of conditioned media from tumor cells, on the angiogenesis. This method can be used to assay the angiogenic potential of a drug or protein and to observe the embryonic development of the chick embryo and other related scientific applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...