Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38364113

ABSTRACT

Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the Drosophila melanogaster genome are functionally relevant, suggesting that regulatory information may be encoded more densely in intergenic regions than has been revealed by most functional dissections of regulatory DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kb of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory information that drives svb expression in the abdominal pupal epidermis is organized in a different way than the elements that drive svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact enhancers separated by large inactive DNA regions, svb expression in the pupal epidermis is driven by regulatory information distributed over broader regions of svb cis-regulatory DNA. In the same vein, we observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved noncoding DNA of the Drosophila genome is contained within regions of open chromatin. These results suggest that part of the evolutionary constraint on noncoding DNA of Drosophila is explained by the density of regulatory information, which may be greater than previously appreciated.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Transcription Factors/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , DNA , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , Enhancer Elements, Genetic
2.
Biophys Rev ; 12(3): 719-730, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32060735

ABSTRACT

Cyclic-di-GMP (c-di-GMP) is an important second messenger in bacteria which regulates the bacterial transition from motile to sessile phase and also plays a major role in processes such as cell division, exopolysaccharide synthesis, and biofilm formation. Due to its crucial role in dictating the bacterial phenotype, the synthesis and hydrolysis of c-di-GMP is tightly regulated via multiple mechanisms. Perturbing the c-di-GMP homeostasis affects bacterial growth and survival, so it is necessary to understand the underlying mechanisms related to c-di-GMP metabolism. Most techniques used for estimating the c-di-GMP concentration lack single-cell resolution and do not provide information about any heterogeneous distribution of c-di-GMP inside cells. In this review, we briefly discuss how the activity of c-di-GMP metabolising enzymes, particularly bifunctional proteins, is modulated to maintain c-di-GMP homeostasis. We further highlight how fluorescence-based methods aid in understanding the spatiotemporal regulation of c-di-GMP signalling. Finally, we discuss the blind spots in our understanding of second messenger signalling and outline how they can be addressed in the future.

3.
J Bacteriol ; 202(2)2020 01 02.
Article in English | MEDLINE | ID: mdl-31659009

ABSTRACT

Stringent response is a conserved stress response mechanism in which bacteria employ the second messengers guanosine tetraphosphate and guanosine pentaphosphate [collectively termed (p)ppGpp] to reprogram their cellular processes under stress. In mycobacteria, these alarmones govern a multitude of cellular phenotypes, such as cell division, biofilm formation, antibiotic tolerance, and long-term survival. Mycobacterium smegmatis possesses the bifunctional RelMsm as a (p)ppGpp synthetase and hydrolase. In addition, it contains a short alarmone synthetase MS_RHII-RSD (renamed RelZ), which contains an RNase H domain in tandem with the (p)ppGpp synthetase domain. The physiological functions of RelMsm have been well documented, but there is no clear picture about the cellular functions of RelZ in M. smegmatis RelZ has been implicated in R-loop induced stress response due to its unique domain architecture. In this study, we elucidate the differential substrate utilization pattern of RelZ compared to that of RelMsm We unveil the ability of RelZ to use GMP as a substrate to synthesize pGpp, thereby expanding the repertoire of second messengers known in mycobacteria. We have demonstrated that the pGpp synthesis activity of RelZ is negatively regulated by RNA and pppGpp. Furthermore, we investigated its role in biofilm formation and antibiotic tolerance. Our findings highlight the complex role played by the RelZ in cellular physiology of M. smegmatis and sheds light upon its functions distinct from those of RelMsmIMPORTANCE Bacteria utilize nucleotide messengers to survive the hostile environmental conditions and the onslaught of attacks within the host. The second messengers guanosine tetraphosphate and pentaphosphate [(p)ppGpp] have a profound impact on the long-term survival, biofilm formation, antibiotic tolerance, virulence, and pathogenesis of bacteria. Therefore, understanding the stress response mechanism regulated by (p)ppGpp is essential for discovering inhibitors of stress response and potential drug targets. Mycobacterium smegmatis contains two (p)ppGpp synthetases: RelMsm and RelZ. Our study unravels the novel regulatory mechanisms of RelZ activity and its role in mediating antibiotic tolerance. We further reveal its ability to synthesize novel second messenger pGpp, which may have regulatory roles in mycobacteria.


Subject(s)
Mycobacterium smegmatis/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Guanine Nucleotides/metabolism , Guanosine Tetraphosphate/metabolism , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Promoter Regions, Genetic/genetics
4.
Environ Sci Pollut Res Int ; 24(9): 8443-8457, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28188552

ABSTRACT

The current study aimed to devise eco-friendly, safe, and cost-effective strategies for enhanced degradation of low- and high-density polyethylene (LDPE and HDPE) using newly formulated thermophilic microbial consortia from cow dung and to assess the biodegradation end products. The plastic-degrading bacteria from cow dung samples gathered from highly plastic-acclimated environments were enriched by standard protocols. The degradation ability was comprehended by zone of clearance method, and the percentage of degradation was monitored by weight reduction process. The best isolates were characterized by standard microbiological and molecular biology protocols. The best isolates were employed to form several combinations of microbial consortia, and the degradation end products were analyzed. The stability of 16S ribosomal DNA (rDNA) was predicted by bioinformatics approach. This study identified 75 ± 2, 55 ± 2, 60 ± 3, and 43 ± 3% degradation for LDPE strips, pellets, HDPE strips, and pellets, respectively, for a period of 120 days (p < 0.05) at 55 °C by the formulated consortia of IS1-IS4, and the degradation efficiency was found to be better in comparison with other formulations. The end product analysis by Fourier transform infrared, scanning electron microscopy, energy-dispersive spectroscopy, and nuclear magnetic resonance showed major structural changes and formation of bacterial biofilm on plastic surfaces. These novel isolates were designated as Bacillus vallismortis bt-dsce01, Psuedomonas protegens bt-dsce02, Stenotrophomonas sp. bt-dsce03, and Paenibacillus sp.bt-dsce04 by 16S rDNA sequencing and suggested good gene stability with minimum Gibb's free energy. Therefore, this study imparts substantial information regarding the utilization of these thermophilic microbial consortia from cow dung for rapid polyethylene removal.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Feces , Microbial Consortia , Polyethylene/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Animals , Biofilms , Cattle , DNA, Ribosomal/genetics , Female , Plastics/analysis , Polyethylene/chemistry , RNA, Ribosomal, 16S/genetics , Soil Pollutants/chemistry
5.
Interdiscip Sci ; 9(2): 254-277, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26857866

ABSTRACT

Ebola is a deadly virus that has recently emerged as an enormous public health concern which causes dangerous illness with high fatality rates of 90 %. The virus is not receptive to known antivirals, and hence, there is a promising need to identify novel inhibitors to combat the disease. The present study deals with identification of potential herbal leads that probably subdue the activity of four major drug targets of Ebola virus such as VP24, VP30, VP35 and VP40 by computer-aided virtual screening. The selection of receptors was performed based on their functional roles in the disease. The drug likeliness and ADMET parameters of 150 herbal ligands were computationally predicted. Those molecules that qualified these parameters were preferred for docking studies with the protein targets. An existing chemical antiviral drug, BCX4430 was also docked and its theoretical binding energy was scrutinized. The docking studies suggested that herbal ligand Limonin demonstrated high binding properties with VP24 and VP35 (binding energy -9.7 kcal/mol). Similarly, curcumin exhibited good binding with VP30 (binding energy -9.6 kcal/mol). Further, Mahanine displayed superior interaction with VP40 (binding energy -7.7 kcal/mol). These herbal leads demonstrated better binding potential than the known chemical analogue in the computational studies. This study serves to bestow paramount information for further experimental studies concerning the utility of herbal ligands as probable lead molecules against Ebola viral targets.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Ebolavirus/metabolism , Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Drug Discovery , Humans , Molecular Docking Simulation , Purine Nucleosides/pharmacology , Pyrrolidines , Transcription Factors/metabolism , Viral Matrix Proteins/metabolism , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...