Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 10(40): 8258-8273, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36134699

ABSTRACT

In a unique approach, the combination of a donor-acceptor pair of hydroxy graphene quantum dots (GQDs-OH) and a red-emissive donor-two-acceptor (D-2-A) type dye with pyridinium units (BPBP) and the well-known host cucurbit[7]uril (CB[7]) has been exploited as a supramolecular sensing assembly for the detection of cancer biomarkers spermine and spermidine in aqueous media at the sub-ppb level based on the affinity-driven exchange of guests from the CB[7] portal. In the binary conjugate, green fluorescent GQDs-OH transfers energy to trigger the emission of the dye BPBP and itself remains in the turn-off state. CB[7] withdraws the dye from the surface of GQDs-OH by strong host-guest interactions with its portal, making GQDs-OH fluoresce again to produce a ratiometric response. In the presence of spermine (SP) or spermidine (SPD), their strong affinity with CB[7] forces the ejection of the fluorophore to settle on the GQDs-OH surface, and the strong green emission of GQDs-OH turns off to device a supramolecular sensor for the detection of SP/SPD. The DFT studies revealed interesting excited-state charge-transfer conjugate formation between BPBP and GQDs leading to turn-on emission of the dye, and further supported the stronger binding modes of BPBP-CB[7], indicating the retrieval of the emission of GQDs. The assembly-disassembly based sensing mechanism was also established by Job's plot analysis, particle size analysis, zeta potential, time-resolved spectroscopy, ITC studies, microscopic studies, etc. The supramolecular sensing assembly is highly selective to SP and SPD, and showed nominal interference from other biogenic amines, amino acids, various metal ions, and anions. The limits of detection (LODs) were 0.1 ppb and 0.9 ppb for spermine and spermidine, respectively. The potential for the real-world application of this sensing assembly was demonstrated by spiking SP and SPD in human urine and blood serum with a high %recovery.


Subject(s)
Graphite , Neoplasms , Quantum Dots , Humans , Quantum Dots/chemistry , Graphite/chemistry , Spermine , Spermidine , Biomarkers, Tumor , Cations , Amino Acids
2.
Analyst ; 147(13): 2997-3006, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35635289

ABSTRACT

A coumarin coupled tetraphenylethylene based AIEgen (TPE-Lac) with an intense greenish-yellow emission has been synthesized and utilized for multipurpose sensing and imaging applications. TPE-Lac acts as a sensitive sensor for the detection of cyanide ions (CN-) with an immediate turn-off response in the presence of many other interfering cations and anions. The limit of detection (LOD) was as low as 33 nM, which is well below the permissible limit set by the World Health Organization (WHO). Cyanide detection in the solid phase was successfully demonstrated by drop-casting the solution of the TPE-Lac probe on TLC plates and measuring and analysing the fluorescence response by ImageJ analysis. TPE-Lac was further employed in the detection of explosive nitroaromatics in solution and solid phases. Also, TPE-Lac was found suitable as an imaging agent and could easily percolate into live H520 cells giving bright fluorescence from the intra-cellular region. Easy and cost-effective synthesis, fast response and low LODs are some of the advantages of this AIEgen over available molecular probes for the same purpose.


Subject(s)
Cyanides , Explosive Agents , Coumarins , Cyanides/analysis , Fluorescent Dyes , Stilbenes
3.
ACS Appl Bio Mater ; 4(2): 1813-1822, 2021 02 15.
Article in English | MEDLINE | ID: mdl-35014527

ABSTRACT

The development of sensitive and selective tools for the detection and quantification of biomarkers is important in the diagnosis and treatment of clinical diseases. Spermine (SP) and spermidine (SPD) act as biomarkers for early-stage diagnosis of cancer in humans as their increased levels in urine are indicative of abnormal biological processes associated with this fatal disease. In this study, we introduced a strategy for solid-supported amplification of the effective aggregation-induced-emission (AIE) effect of a water-soluble tetraphenylethylene (TPE)-based probe in developing a supramolecular sensing platform for the rapid, sensitive, and selective detection of SP and SPD in water. The nonemissive TPE derivative (TPEHP) forms a less emissive conjugate with hydroxyl cucurbit[6]uril (CB[6]OH) in water, which undergoes several-fold enhancement of effective emission upon electrostatic interaction with the solid surface of hydroxyapatite nanoparticles (HAp NPs), dispersed in the aqueous media. The corresponding three-component supramolecular assembly disrupts by the intrusion of SP and SPD in the CB[6] portal because of the stronger binding ability with CB[6], resulting in a turn-off fluorescence sensor for SP and SPD with enhanced sensitivity. The assembly-disassembly-based sensing mechanism was thoroughly demonstrated by carrying out isothermal titration calorimetry (ITC), spectroscopic, and microscopic experiments. The sensing system showed low limits of detection (LODs) of 1.4 × 10-8 and 3.6 × 10-8 M for SP and SPD, respectively, which are well below the required range for the early diagnosis of cancer. Besides, a good linear relationship was obtained for both SP and SPD. Nominal interference from various metal ions, anions, common chemicals, amino acids, and other biogenic amines makes this sensing platform suitable for the real-time, low-level measurement of spermine (and spermidine) in human urinary and blood samples.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Heterocyclic Compounds, 2-Ring/chemistry , Imidazolidines/chemistry , Macrocyclic Compounds/chemistry , Stilbenes/chemistry , Biocompatible Materials/chemical synthesis , Humans , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Materials Testing , Molecular Structure , Particle Size , Spermidine/blood , Spermidine/urine , Spermine/blood , Spermine/urine
4.
RSC Adv ; 11(35): 21269-21278, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-35478840

ABSTRACT

Hydrazine is a vital precursor used in several pharmaceuticals and pesticide industries and upon exposure can cause severe health hazards. Herein, a new AIEgen, tetraphenylethylene phthalimide (TPE-PMI), is synthesized in a one-step solvent-free mechanochemical approach exploiting the simple condensation between TPE-NH2 and phthalic anhydride and used for the selective and sensitive detection of hydrazine. TPE-PMI with an AIE-active TPE-moiety is non-emissive in the solid phase by design. Hydrazine performs the cleavage of TPE-PMI in a typical "Gabriel synthesis" pathway to release AIE-active TPE-NH2 in an aqueous solution to emit blue fluorescence. A gradual rise in fluorescence intensity at 462 nm was due to the increasing hydrazine concentration and TPE-PMI showed a linear relationship with hydrazine in the concentration range from 0.2 to 3 µM. The selectivity study confirmed that the probe is inert to amines, amino acids, metal anions, anions and even common oxidants and reductants. The detection limit is 6.4 ppb which is lower than the US Environmental Protection Agency standard (10 ppb). The practical utilities of TPE-PMI were successfully demonstrated through quantitative detection of hydrazine vapour on solid platforms like paper strips and TLC plates. Furthermore, on-site detection of hydrazine in the solid phase was demonstrated by spiking the soil samples with measured quantities of hydrazine and quantitation through image analysis. This cost-effective sensing tool was successfully utilized in in vitro detection of hydrazine in live HeLa cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...