Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
AAPS PharmSciTech ; 24(4): 96, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012545

ABSTRACT

Scale-up and transfer of lyophilization processes remain very challenging tasks considering the technical challenges and the high cost of the process itself. The challenges in scale-up and transfer were discussed in the first part of this paper and include vial breakage during freezing at commercial scale, cake resistance differences between scales, impact of differences in refrigeration capacities, and geometry on the performance of dryers. The second part of this work discusses successful and unsuccessful practices in scale-up and transfer based on the experience of the authors. Regulatory aspects of scale-up and transfer of lyophilization processes were also outlined including a topic on the equivalency of dryers. Based on an analysis of challenges and a summary of best practices, recommendations on scale-up and transfer of lyophilization processes are given including projections on future directions in this area of the freeze drying field. Recommendations on the choice of residual vacuum in the vials were also provided for a wide range of vial capacities.


Subject(s)
Freeze Drying , Technology Transfer , Technology, Pharmaceutical , Temperature , Guidelines as Topic
2.
J Pharm Sci ; 112(6): 1509-1522, 2023 06.
Article in English | MEDLINE | ID: mdl-36796635

ABSTRACT

Prediction of lyophilized product shelf-life using accelerated stability data requires understanding the temperature dependence of the degradation rate. Despite the abundance of published studies on stability of freeze-dried formulations and other amorphous materials, there are no definitive conclusions on the type of pattern one can expect for the temperature dependence of degradation. This lack of consensus represents a significant gap which may impact development and regulatory acceptance of freeze-dried pharmaceuticals and biopharmaceuticals. Review of the literature demonstrates that the temperature dependence of degradation rate constants in lyophiles can be represented by the Arrhenius equation in most cases. In some instances there is a break in the Arrhenius plot around the glass transition temperature or a related characteristic temperature. The majority of the activation energies (Ea), which are reported for various degradation pathways in lyophiles, falls in the range of 8 to 25 kcal/mol. The degradation Ea values for lyophiles are compared with the Ea for relaxation processes and diffusion in glasses, as wells as solution chemical reactions. Collectively, analysis of the literature demonstrates that the Arrhenius equation represents a reasonable empirical tool for analysis, presentation, and extrapolation of stability data for lyophiles, provided that specific conditions are met.


Subject(s)
Proteins , Temperature , Molecular Weight , Drug Stability , Proteins/chemistry , Transition Temperature , Freeze Drying
3.
AAPS PharmSciTech ; 24(1): 45, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36703029

ABSTRACT

Best practices for performing freeze dryer equipment qualification are recommended, focusing on identifying methods to quantify shelf thermal uniformity (also known as "shelf surface uniformity"), equipment capability, and performance metrics of the freeze dryer essential to the pharmaceutical Quality by Design paradigm. Specific guidelines for performing shelf temperature mapping, freeze dryer equipment limit testing (the capability curve), and condenser performance metrics have been provided. Concerning shelf temperature mapping and equipment capability measurements, the importance of paying attention to the test setup and the use of appropriate testing tools are stressed. In all the guidelines provided, much attention has been paid to identifying the balance between obtaining useful process knowledge, logistical challenges associated with testing in the production environment vs that at laboratory scale, and the frequency of the testing necessary to obtain such useful information. Furthermore, merits and demerits of thermal conditions maintained on the cooled surfaces of the freeze dryer condenser have been discussed identifying the specific influence of the condenser surface temperature on the process conditions using experimental data to support the guidelines. Finally, guidelines for systematic leak rate testing criteria for a freeze dryer are presented. These specific procedural recommendations are based on calculations, measurements, and experience to provide useful process and equipment knowledge.


Subject(s)
Freeze Drying , Technology, Pharmaceutical , Freeze Drying/instrumentation , Technology, Pharmaceutical/methods , Temperature , Guidelines as Topic
4.
Int J Pharm ; 630: 122417, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36410667

ABSTRACT

An emerging approach to process development of a lyophilized pharmaceutical product is to construct a graphical design space for primary drying as an aid to process optimization. The purpose of this paper is to further challenge the assumption in earlier work that the maximum values of the resistance of dried product layer, Rp, is approximately constant and is independent of process conditions within the "acceptable" region of the design space. Three model formulations containing bovine serum albumin as the model protein were chosen to represent: (a) an amorphous system, (b) a crystalline system, and (c) a mixed system where both an amorphous and a crystalline component were present. Low temperature differential scanning calorimetry (DSC) and freeze dry microscopy (FDM) experiments were conducted to estimate critical product temperature. A conservative lyophilization cycle was conducted for each formulation to collect mass flow data and individual design spaces were then established. A series of lyophilization cycles were then conducted using process conditions that resided within the individual design space and the resultant product temperature and resistance of dried product layer (Rp) values were compared between the individual cycles within each formulation. The data indicated that the Rp was component dependent with the mannitol formulation exhibiting higher Rp values than the sucrose formulation. Interestingly, when mannitol was retained amorphous, the formulation exhibited a lower Rp, similar to that of the sucrose formulation. The mixed formulation exhibited intermediate Rp values. Crystallization of mannitol is hypothesized to facilitate a decrease in the size of the ice porous structure by making the water vapor flow path tortuous, thereby increasing the Rp of mannitol formulations. Within the "acceptable" zone of the individual design space, Rp was dependent on the process condition with more aggressive shelf temperature cycles resulting in lower Rp. Specific Surface Area measurements of freeze-dried solids demonstrated that more aggressive conditions resulted in smaller surface area. Freeze-dried solids of crystalline formulations consistently exhibited higher specific surface area than the amorphous formulations.


Subject(s)
Desiccation , Mannitol , Freeze Drying/methods , Calorimetry, Differential Scanning , Temperature , Sucrose/chemistry
5.
AAPS PharmSciTech ; 24(1): 11, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36451057

ABSTRACT

The freeze-drying process scale-up and transfer remain a complicated and non-uniform practice. We summarized inefficient and good practices in these papers and provided some practical advice. It was demonstrated that using the same process set points/times in laboratory and commercial scale dryers may lead to loss of product quality (collapse or vial breakage). The emerging modeling approach demonstrated practical advantages. However, the upfront generation of some input parameters (vial heat transfer coefficient, minimum controllable pressure, and maximum sublimation rate) is essential for model utilization. While the primary drying step can be transferred with a high degree of confidence (e.g., using modeling), and secondary drying is usually fairly straightforward, predicting potential changes in product behavior during freezing remains challenging.


Subject(s)
Desiccation , Hot Temperature , Freeze Drying
6.
J Pharm Sci ; 110(6): 2379-2385, 2021 06.
Article in English | MEDLINE | ID: mdl-33711346

ABSTRACT

Antibody drug conjugates (ADCs) have been at the forefront in cancer therapy due to their target specificity. All the FDA approved ADCs are developed in lyophilized form to minimize instability associated with the linker that connects the cytotoxic drug and the antibody during shipping and storage. We present here solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS) as a tool to analyze protein structure and matrix interactions for formulations of an ADC with and without commonly used excipients. We compared results of the ssHDX-MS with accelerated stability results using size-exclusion chromatography and determined that the former technique was able to successfully identify the destabilizing effects of mannitol and polysorbate 80. In comparison, Fourier-transform infrared spectroscopy results were inconclusive. The agreement between ssHDX-MS and stressed stability studies supports the potential of ssHDX-MS as a method of predicting relative stability of different formulations.


Subject(s)
Deuterium Exchange Measurement , Immunoconjugates , Deuterium , Drug Stability , Freeze Drying , Hydrogen , Mass Spectrometry
7.
AAPS PharmSciTech ; 22(1): 53, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33469853

ABSTRACT

The objective of this investigation was to evaluate two methods for measuring the maximum sublimation rate that a freeze-dryer will support-the minimum controllable pressure method and the choke point method. Both methods gave equivalent results, but the minimum controllable pressure method is preferred, since it is easier, faster, and less subjective. The ratio of chamber pressure to condenser pressure corresponding to the onset of choked flow was considerably higher in this investigation (up to about 20:1) than in previously published reports. This ratio was not affected by the location of the pressure gauge on the condenser; that is, on the foreline of the vacuum pump versus on the body of the condenser itself. The total water loss due to sublimation as measured by tunable diode laser absorption spectroscopy was consistently within 5% of gravimetrically determined weight loss, regardless of whether the measurement took place during choked versus non-choked process conditions.


Subject(s)
Freeze Drying/instrumentation , Pressure , Spectrum Analysis , Temperature , Water/chemistry
8.
J Pharm Sci ; 109(6): 1896-1904, 2020 06.
Article in English | MEDLINE | ID: mdl-32112825

ABSTRACT

Controlling ice nucleation, at a fixed higher temperature, results in larger ice crystals, which can reduce the ice/freeze-concentrate interface area where proteins can adsorb and partially unfold. Moreover, limited work has been done to address any effects on short-term stability due to a slow ramp or long isothermal hold after the ice nucleation step. The objective was to evaluate the effect of the ice nucleation temperature and residence time in the freeze-concentrate on in-process or storage stability of representative proteins, human IgG, and recombinant human serum albumin. The results suggest a higher ice nucleation temperature can minimize aggregation of protein pharmaceuticals, which are labile at ice/aqueous interface. Apart from the ice nucleation step, the present study identified the residence time in the freeze-concentrate as the critical factor that influences protein stability post ice nucleation. At a temperature where enough mobility exists (i.e., above Tg' of the formulation), the long residence time in the freeze-concentrate can result in significant protein aggregation during the process. In addition to stability, the findings revealed that not only the ice nucleation temperature but also the thermal history of the formulation post ice nucleation defines the surface area of ice and the porous structure of the freeze-dried cake.


Subject(s)
Ice , Freeze Drying , Freezing , Humans , Protein Stability , Temperature
9.
J Pharm Sci ; 108(9): 2972-2981, 2019 09.
Article in English | MEDLINE | ID: mdl-31004653

ABSTRACT

The equipment capability curve is one of the bounding elements of the freeze-drying design space, and understanding it is critical to process design, transfer, and scale-up. The second bounding element of the design space is the product temperature limit beyond which the product collapses. The high cost associated with freeze-drying any product renders it crucial to operate using the most efficient cycle within the limits of the equipment and the product. In this work, we present a computational model to generate the equipment capability curve for 2 laboratory scale freeze-dryers and compare the results to experimentally generated equipment capability curves. The average deviations of the modeling results from the experiments for the 2 lyophilizers modeled are -4.8% and -7.2%. In addition, we investigate the effect of various numerical and geometric parameters on the simulated equipment capability. Among the numerical parameters, the chamber wall thermal boundary conditions exert the largest influence with a maximum value of 12.3%. Among the geometric parameters, the inclusion of the isolation valve reduces the equipment capability by 23.7%. Larger isolation valves, required for controlled nucleation technology, choke the flow in the duct at lower sublimation rates, thereby lowering the equipment capability limit.


Subject(s)
Computer-Aided Design , Freeze Drying/instrumentation , Technology, Pharmaceutical/instrumentation , Computer Simulation , Models, Theoretical , Pressure , Technology, Pharmaceutical/methods , Temperature
10.
AAPS PharmSciTech ; 19(4): 1810-1817, 2018 May.
Article in English | MEDLINE | ID: mdl-29616490

ABSTRACT

One of the current methods for cycle optimization in primary drying to is develop a graphical design space based on quality by design (QbD). In order to construct the design space, the vial heat transfer coefficient (Kv) is needed. This paper investigated experimental factors that can affect the Kv result, examined the relationship between the batch average Kv and Kv values for individual vials, and recommended best practices for measuring Kv. Factors investigated included the technique for measuring ice temperature, shelf temperature, the use of a radiation shield on the door of the freeze-dry chamber, and shelf spacing. All experiments reported here used a chamber pressure of 100 mTorr. The most important factor was the technique for ice temperature measurement, where it is important to assure that any restrictions to vapor flow at the top of the vial are the same between monitored and non-monitored vials. Another factor that was found to play a role was the shelf temperature whereby the lower the shelf temperature, the larger the "edge effect," and the larger the average Kv. Factors that were found to not have a significant effect were the use of a radiation shield inside the chamber door and the shelf spacing. Being aware of these factors and knowing best practices when determining the vial heat coefficient will lead to more accurate design spaces and better cycle optimization.


Subject(s)
Drug Packaging/methods , Glass/chemistry , Hot Temperature , Technology, Pharmaceutical/methods , Desiccation/methods , Drug Packaging/standards , Freeze Drying/methods
11.
J Pharm Sci ; 106(12): 3583-3590, 2017 12.
Article in English | MEDLINE | ID: mdl-28867201

ABSTRACT

The objective of this research was to study the atypical secondary drying dynamics observed during the freeze-drying of a formulation consisting of mannitol, disaccharide, and sodium chloride, where "bursts" of water vapor release were observed during secondary drying as detected by comparative pressure measurement. "Thief" samples were removed at the end of primary drying and during secondary drying as the shelf temperature was increased in a stepwise fashion. These samples were examined by X-ray powder diffraction and thermal analysis. From the X-ray powder diffraction data, we determined that mannitol crystallized predominantly as its hemihydrate. The physical state of mannitol changed from the hemihydrate form to anhydrous forms during secondary drying. Investigation of the effect of excipients on mannitol crystallization demonstrated that sodium chloride (at 225 mM, 1.3% w/v) had the greatest influence on hemihydrate crystallization, followed by trehalose and sucrose. However, only negligible hemihydrate formation was observed when mannitol was freeze-dried either by itself or in the presence of 150 mM sodium chloride and no hemihydrate in the presence of 75 mM sodium chloride. In general, a combination of a disaccharide and sodium chloride promoted the hemihydrate formation to a greater extent than the individual components. Comparative pressure measurement was demonstrated to be an effective tool to monitor mannitol hemihydrate dehydration during secondary drying.


Subject(s)
Mannitol/chemistry , Proteins/chemistry , Chemistry, Pharmaceutical/methods , Crystallization/methods , Desiccation/methods , Disaccharides/chemistry , Excipients/chemistry , Freeze Drying/methods , Powders/chemistry , Sodium Chloride/chemistry , Sucrose/chemistry , Temperature , Trehalose/chemistry , X-Ray Diffraction/methods
12.
J Pharm Sci ; 106(7): 1706-1721, 2017 07.
Article in English | MEDLINE | ID: mdl-28341598

ABSTRACT

Cake appearance is an important attribute of freeze-dried products, which may or may not be critical with respect to product quality (i.e., safety and efficacy). Striving for "uniform and elegant" cake appearance may continue to remain an important goal during the design and development of a lyophilized drug product. However, "sometimes" a non-ideal cake appearance has no impact on product quality and is an inherent characteristic of the product (due to formulation, drug product presentation, and freeze-drying process). This commentary provides a summary of challenges related to visual appearance testing of freeze-dried products, particularly on how to judge the criticality of cake appearance. Furthermore, a harmonized nomenclature and description for variations in cake appearance from the ideal expectation of uniform and elegant is provided, including representative images. Finally, a science and risk-based approach is discussed on establishing acceptance criteria for cake appearance.


Subject(s)
Freeze Drying/methods , Pharmaceutical Preparations/chemistry , Drug Compounding/methods , Drug Stability , Phase Transition , Quality Control
13.
AAPS PharmSciTech ; 18(7): 2379-2393, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28205144

ABSTRACT

Recommended best practices in monitoring of product status during pharmaceutical freeze drying are presented, focusing on methods that apply to both laboratory and production scale. With respect to product temperature measurement, sources of uncertainty associated with any type of measurement probe are discussed, as well as important differences between the two most common types of temperature-measuring instruments-thermocouples and resistance temperature detectors (RTD). Two types of pressure transducers are discussed-thermal conductivity-type gauges and capacitance manometers, with the Pirani gauge being the thermal conductivity-type gauge of choice. It is recommended that both types of pressure gauge be used on both the product chamber and the condenser for freeze dryers with an external condenser, and the reasoning for this recommendation is discussed. Developing technology for process monitoring worthy of further investigation is also briefly reviewed, including wireless product temperature monitoring, tunable diode laser absorption spectroscopy at manufacturing scale, heat flux measurement, and mass spectrometry as process monitoring tools.


Subject(s)
Freeze Drying/instrumentation , Technology, Pharmaceutical/instrumentation , Freeze Drying/methods , Pressure , Spectrum Analysis , Technology, Pharmaceutical/methods , Temperature
14.
J Pharm Sci ; 105(5): 1684-1692, 2016 05.
Article in English | MEDLINE | ID: mdl-27044943

ABSTRACT

Myoglobin (Mb) was lyophilized in the absence (Mb-A) and presence (Mb-B) of sucrose in a pilot-scale lyophilizer with or without controlled ice nucleation. Cake morphology was characterized using scanning electron microscopy, and changes in protein structure were monitored using solid-state Fourier-transform infrared spectroscopy, solid-state hydrogen-deuterium exchange-mass spectrometry, and solid-state photolytic labeling-mass spectrometry (ssPL-MS). The results showed greater variability in nucleation temperature and irregular cake structure for formulations lyophilized without controlled nucleation. Controlled nucleation resulted in nucleation at ∼(-5°C) and uniform cake structure. Formulations containing sucrose showed better retention of protein structure by all measures than formulations without sucrose. Samples lyophilized with and without controlled nucleation were similar by most measures of protein structure. However, ssPL-MS showed the greatest photoleucine incorporation and more labeled regions for Mb-B lyophilized with controlled nucleation. The data support the use of solid-state hydrogen-deuterium exchange-mass spectrometry and ssPL-MS to study formulation and process-induced conformational changes in lyophilized proteins.


Subject(s)
Myoglobin/analysis , Myoglobin/chemistry , Tandem Mass Spectrometry/methods , Animals , Drug Compounding , Freeze Drying/methods , Horses , Mass Spectrometry/methods , Protein Structure, Secondary , X-Ray Diffraction/methods
15.
Eur J Pharm Biopharm ; 85(2): 236-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23899644

ABSTRACT

A scientific rationale is proposed for the establishment of acceptance criteria for leak rates in pharmaceutical freeze dryers. A method was developed to determine the quantity of air that could leak into any lyophilizer from the outside while still maintaining Class 100/Grade A microbial conditions. A lyophilizing product is assumed most vulnerable to microbial contamination during secondary drying, when mass transfer of water vapor from product to condenser is minimal. Using the void volume of the dryer, calculated from change in internal pressure when a known volume of air is introduced, and the potential maximum bioburden of the leaked air (based on measured values), calculations can determine the allowable leaked volume of air, the flow rate required to admit that volume in a given time frame, and the pressure rise that would result from the leak over a given testing period. For the dryers in this study, using worst-case air quality conditions, it was determined that a leak resulting in a pressure rise of 0.027 mbar over a 30 min period would allow the dryers to remain in secondary drying conditions for 62 h before the established action level of one colony forming unit for each cubic meter of air space would be reached.


Subject(s)
Freeze Drying/methods , Technology, Pharmaceutical/methods , Air , Drug Dosage Calculations , Environmental Monitoring/methods , Pressure , Temperature , Vacuum , Water/chemistry
16.
J Pharm Sci ; 102(5): 1610-25, 2013 May.
Article in English | MEDLINE | ID: mdl-23580359

ABSTRACT

The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions.


Subject(s)
Freeze Drying/methods , Algorithms , Equipment Design , Freeze Drying/instrumentation , Hot Temperature , Pressure , Vacuum
17.
Pharm Dev Technol ; 16(6): 549-76, 2011.
Article in English | MEDLINE | ID: mdl-21932931

ABSTRACT

A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.


Subject(s)
Drug Design , Ethacrynic Acid/chemistry , Buffers , Chemistry, Pharmaceutical , Crystallization , Drug Stability , Freeze Drying , Hydrogen-Ion Concentration , Hydrolysis , Transition Temperature
18.
J Pharm Sci ; 100(8): 3453-3470, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21465488

ABSTRACT

A novel and scalable method has been developed to enable control of the ice nucleation step for the freezing process during lyophilization. This method manipulates the chamber pressure of the freeze dryer to simultaneously induce nucleation in all product vials at a desired temperature. The effects of controlled nucleation on the drying rate of various formulations including 5% (w/w) mannitol, 5% (w/w) sucrose, and a mixture of 3% (w/w) mannitol and 2% (w/w) sucrose were studied. For a 5% (w/w) mannitol, uncontrolled ice nucleation occurred randomly at product temperatures between -8.0°C and -15.9°C as the vials were cooled to -40°C. Controlled ice nucleation was achieved at product temperatures between -2.3°C and -3.7°C. The effect of nucleation control on the effective pore radius (r(e) ) of the cake was determined from the product temperature profiles using a pore diffusion model in combination with a nonlinear parameter estimation approach reported earlier. Results show that the value of r(e) for 5% (w/w) mannitol was enlarged from 13 to 27 µm by uniformly inducing nucleation at higher temperatures. Applying the resistance parameters obtained from the pore diffusion model for 5% (w/w) mannitol, optimized cycles were theoretically generated and experimentally tested, resulting in a 41% reduction in primary drying time.


Subject(s)
Ice , Technology, Pharmaceutical/methods , Crystallization , Equipment Design , Freeze Drying/instrumentation , Freeze Drying/methods , Mannitol/chemistry , Models, Chemical , Porosity , Solutions , Stochastic Processes , Sucrose/chemistry , Surface Properties , Technology, Pharmaceutical/instrumentation , Time Factors , Transition Temperature , Video Recording , Water/analysis
19.
J Pharm Sci ; 98(9): 3483-94, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19569225

ABSTRACT

Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.


Subject(s)
Freeze Drying/instrumentation , Freeze Drying/methods , Computer Simulation , Equipment Design , Models, Chemical , Vacuum , Volatilization , Water/chemistry
20.
J Pharm Sci ; 98(9): 3469-82, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19504575

ABSTRACT

Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.


Subject(s)
Freeze Drying/methods , Software , Computer Simulation , Freeze Drying/instrumentation , Hot Temperature , Kinetics , Lasers, Semiconductor , Mannitol/chemistry , Models, Chemical , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...