Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 2805343, 2022.
Article in English | MEDLINE | ID: mdl-36065254

ABSTRACT

Objective: This study is aimed at determining two main points. First, if the Canary System™ (CS), initially used to assess caries, can measure a decalcification depth of bleached enamel quantitatively, and second, whether or not whitening has a harmful effect on enamel. This device can be considered a useful tool in the clinical assessment of the progression of demineralization after bleaching. Materials and Methods: This study collected sixty human premolars that are in a good state recently extracted for orthodontic reason. To properly disinfect and preserve the premolars, they were stored in a saline solution and later in distilled water for a period of two weeks to allow the premolars to rehydrate. Later, 24 hours before the experiment, the premolars were introduced into a solution of artificial saliva to acquire back their minerals. The mineral content of the teeth was measured by the Canary System™ before bleaching. The teeth were bleached with 30% hydrogen peroxide (fläsh HP 30%), 30 min per week and for 3 consecutive weeks to simulate the conditions of strong bleaching in the clinic. The extent of demineralized enamel was measured by the Canary System™ at three points on the enamel surface of each tooth. The data were averaged for each application of the bleaching product. The demineralization extent of the teeth was measured by the Canary System™ before and after bleaching. The significance level was set at 0.05, and SPSS version 26 was used. The data were analyzed by using Wilcoxon's and Student's tests. Results: Mineral loss occurred after the first bleaching session; the Canary System™ detected a decalcification in the first bleaching session (532 ± 322 µm) compared to the other sessions (p ≤ 0.05), while no significant change was detected between the second and the third sessions (p > 0.05). Conclusion: Based on the findings of the present study, under in vitro conditions, it was possible to measure the demineralization extent of bleached enamel with the Canary System™.


Subject(s)
Tooth Bleaching , Dental Enamel , Humans , Hydrogen Peroxide , Hypochlorous Acid , Minerals , Saliva, Artificial , Sodium Compounds , Tooth Bleaching/adverse effects
2.
J Clin Exp Dent ; 14(1): e55-e63, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35070125

ABSTRACT

BACKGROUND: The aim of this study was (1) to determine and compare the shear bond strength (SBS) of a bioactive composite "Activa Bioactive Restorative" with and without bonding agent and a nanocomposite "Filtek Z350 XT/Z350" and (2) to measure and compare the amount of fluoride release from a bioactive composite "Activa Bioactive Restorative" and a glass ionomer "Equia forte". MATERIAL AND METHODS: Forty two dentin surfaces from freshly extracted human molars were prepared for shear bond strength testing. The specimens were randomly divided into three equal groups. The restorative materials were applied to all dentin surfaces according to the manufacturer's instructions, using a special jig (Ultradent) in the following manner : Group 1 (Activa Bioactive Restorative with adhesive), Group 2 (Activa Bioactive Restorative without adhesive) and Group 3 (Filtek Z350 XT/Z350). The bonded specimens were subjected to thermocycling in 5°C and 55°C water baths then tested for SBS in a universal testing machine (1 mm/minute). Kolmogorov-Smirnov and Levene tests were used to evaluate the distribution of the variable and the equality of variances respectively and a Student's T- test was applied to compare the mean strength between the groups. In the next test, thirty disc shaped specimens were fabricated using Activa BioActive restorative and Equia Forte; 15 specimens from each material. The specimens of each group were immersed separately in 5 ml of deionized water. Fluoride release was measured daily throughout 15 days using a fluoride-specific ion electrode and an ion-analyzer. Repeated measures analysis of variance with one within-subject factor (time) and one between-subject factor (Activa Bioactive / Equia Forte) was applied to compare the amount of released fluoride between groups and within time. It was followed by univariate analyses and Bonferroni multiple comparisons tests. RESULTS: The mean shear bond strength of Activa Bioactive Restorative with adhesive was found to be 17.379 (± 8.5043) MPa and 19.443(± 8.3293) MPa for the Filtek Z350 XT/Z350 group. There was no significant difference between both groups. Regarding fluoride release, the amount of Fluoride released was significantly greater in the Equia Forte group compared to the Activa Bioactive group (-p-value<0.05). The mean amount of Fluoride has significantly decreased over time with Activa Bioactive group (-p-value<0.001); it showed the highest fluoride release during the first 24 hours post-setting. Also in the Equia Forte group, the mean amount of Fluoride release showed a progressive and significant decrease over time (-p-value<0.001), although the amount of Fluoride released was significantly greater in the Equia Forte group compared to the Activa Bioactive group (-p-value<0.05). CONCLUSIONS: Activa Bioactive Restorative with adhesive and a nanocomposite showed similar bond strengths. Activa Bioactive Restorative doesn't have the self-adhesive property. The fluoride ion release profile of Activa was lower than that of the Equia Forte. Key words:Bioactive composite, nanocomposite, glass ionomer, fluoride release, shear bond strength, thermocycling.

SELECTION OF CITATIONS
SEARCH DETAIL
...