Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroradiol J ; 36(3): 305-314, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36178411

ABSTRACT

Meditation practices increase attention, memory, and self-awareness. The neuroscientific study of meditation has helped gain useful insights into the functional changes in the brain. In this study, we have assessed the performance of meditators with different years of practice while performing an engaging task rather than studying the meditation practice itself. This task helps assess many neural processes simultaneously and represents task performance in presence of multiple audio-visual distractors as in a real-life scenario. The long-term practice of meditation could bring neuroplastic changes in the way cognitive processing is carried out. It could be conscious and effortful in short-term practitioners and relatively unconscious and effortless in long-term practitioners. Our goal is to understand if it is possible to differentiate between long-term and short-term meditators solely based on their cognitive processing. A group of proficient Rajayoga meditators from the Brahma Kumaris were recruited based on their meditation experience-Long-Term Practitioners (n = 12, mean 13,596 h) and Short-Term Practitioners (n = 10, mean 1095 h). A task-based functional Magnetic Resonance Imaging was acquired while the subjects performed the task. Functional Connectivity Analysis was performed to derive the correlation measures to be used as features for classification. Five supervised Machine Learning algorithms Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, and Gradient Boosted Tree were used for classification. Among all the classifiers Gradient Boosted Tree performed the best with an accuracy of 77% when all the four Functional Connectivity Metrics were used. Connectivity in visual areas, cerebellum, left rostral prefrontal cortex, and middle frontal gyrus was found to be higher in long-term meditators. Such a classification demonstrates that long-term meditation practice brings about neuroplastic changes that influence cognitive processing.


Subject(s)
Brain Mapping , Brain , Humans , Brain/diagnostic imaging , Frontal Lobe , Logic , Machine Learning
2.
Front Neurosci ; 10: 1, 2016.
Article in English | MEDLINE | ID: mdl-26858586

ABSTRACT

The present study describes the development of a neurocognitive paradigm: "Assessing Neurocognition via Gamified Experimental Logic" (ANGEL), for performing the parametric evaluation of multiple neurocognitive functions simultaneously. ANGEL employs an audiovisual sensory motor design for the acquisition of multiple event related potentials (ERPs)-the C1, P50, MMN, N1, N170, P2, N2pc, LRP, P300, and ERN. The ANGEL paradigm allows assessment of 10 neurocognitive variables over the course of three "game" levels of increasing complexity ranging from simple passive observation to complex discrimination and response in the presence of multiple distractors. The paradigm allows assessment of several levels of rapid decision making: speeded up response vs. response-inhibition; responses to easy vs. difficult tasks; responses based on gestalt perception of clear vs. ambiguous stimuli; and finally, responses with set shifting during challenging tasks. The paradigm has been tested using 18 healthy participants from both sexes and the possibilities of varied data analyses have been presented in this paper. The ANGEL approach provides an ecologically valid assessment (as compared to existing tools) that quickly yields a very rich dataset and helps to assess multiple ERPs that can be studied extensively to assess cognitive functions in health and disease conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...