Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 239(Pt 2): 117246, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37806474

ABSTRACT

BACKGROUND: The spatiotemporal and demographic disparities in exposure to ultrafine particles (UFP; number concentrations of particulate matter (PM) with diameter ≤0.1 µm), a key subcomponent of fine aerosols (PM2.5; mass concentrations of PM ≤ 2.5 µm), have not been well studied. OBJECTIVE: To quantify and compare the aerosol pollutant exposure disparities for UFP and PM2.5 by socio-demographic factors in New York State (NYS). METHODS: Ambient atmospheric UFP and PM2.5 were quantified using a global three-dimensional model of chemical transport with state-of-the-science aerosol microphysical processes validated extensively with observations. We matched these to U.S. census demographic data for varied spatial scales (state, county, county subdivision) and derived population-weighted aerosol exposure estimates. Aerosol exposure disparities for each demographic and socioeconomic (SES) indicator, with a focus on race-ethnicity and income, were quantified for the period 2013-2020. RESULTS: The average NYS resident was exposed to 4451 #·cm-3 UFP and 7.87 µg·m-3 PM2.5 in 2013-2020, but minority race-ethnicity groups were invariably exposed to greater daily aerosol pollution (UFP: +75.0% & PM2.5: +16.2%). UFP has increased since 2017 and is temporally and seasonally out-of-phase with PM2.5. Race-ethnicity exposure disparities for PM2.5 have declined over time; by -6% from 2013 to 2017 and plateaued thereafter despite its decreasing concentrations. In contrast, these disparities have increased (+12.5-13.5%) for UFP. The aerosol pollution exposure disparities were the highest for low-income minorities and were more amplified for UFP than PM2.5. DISCUSSION: We identified large disparities in aerosol pollution exposure by urbanization level and socio-demographics in NYS residents. Jurisdictions with higher proportions of race-ethnicity minorities, low-income residents, and greater urbanization were disproportionately exposed to higher concentrations of UFP and PM2.5 than other NYS residents. These race-ethnicity exposure disparities were much larger, more disproportionate, and unabating over time for UFP compared to PM2.5 across various income strata and levels of urbanicity.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter/analysis , Air Pollutants/analysis , New York , Environmental Monitoring/methods , Environmental Exposure/analysis , Aerosols/analysis , Demography , Air Pollution/analysis
2.
Sci Total Environ ; 863: 160756, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36528105

ABSTRACT

New particle formation (NPF) and subsequent growth can contribute upwards of 50 % of the global cloud condensation nuclei (CCN) budget. It is also a significant source of ultrafine aerosols (PM0.1) with health implications. Ammonia (NH3) can play a significant role in enhancing NPF and contributing to the growth of nucleated particles. Understanding these processes are vital for air quality and climate. Here, we examine the role of NH3 in NPF and consequent effects on aerosol number concentrations (including CCN) and size distributions during springtime over the United States (US). We use the GEOS-Chem chemistry transport model coupled with the size-resolved Advanced Particle Microphysics (APM) Model. We also employ measurements of particle number size distributions, CN10 (condensation nuclei > 10 nm), CCN0.4 (CCN at 0.4 % supersaturation), and aerosol composition (SO4, NO3, NH4, Organics) at the Southern Great Plains site (SGP). The impact of NH3 in ion-mediated nucleation is the improved capturing of the occurrence of almost all springtime (March-April) NPF events observed at SGP during 2015-2020. Furthermore, this brings the magnitude and temporal variations of particle number concentrations in stronger agreement with observations; mean fractional bias for modeled CN10(CCN0.4) reducing from -1.26 to -0.27 (-0.75 to -0.54) and overall good-agreement (∣FractionalBias ∣ < 0.6) improving from 8.5 to 54 % (31 to 42 %). The contribution of NH3 in new particle formation is important for springtime abundance of ultrafine aerosols (explaining 63 ± 15 % of CN10) and CCN (16 ± 10 % of CCN0.4) over the US. Our analysis shows that the deviation of CCN0.4 is strongly correlated with PM1-NH4+ deviations, suggesting the importance of improved model representation of ammonium for more accurate quantification of potential cloud forming particles.

3.
J Geophys Res Atmos ; 123(15): 8315-8325, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-31032164

ABSTRACT

The concentrations of atmospheric ammonia ([NH3]) have been observed to be increasing over the United States in the last decade, especially in Eastern United States. It is important to understand this temporal trend and variation due to the role of NH3 in particle formation and its ecological effects. Here the long-term trend of [NH3] over the United States is investigated using GEOS-Chem, a global 3-D tropospheric chemistry model, and is corroborated with empirical evidence from the Ammonia Monitoring Network. Model simulations, consistent with observations, show increase in [NH3] over the United States from 2001 to 2016, with magnitude largest in the East (~5% to 12%/year) and smallest in the West (~0% to 5%/year). Reasons for this are examined, and evidence for the role of decreasing SO2 and NOx emissions in increasing [NH3] is provided. The contributions of meteorology and NH3 emission changes to the [NH3] increase appear to be small during the period. Our sensitivity study suggests that decreasing SO2 and NOx emissions over the United States owing to stringent regulations explain about 2/3 and 1/3 of the increase in [NH3], respectively. This effect is different for various NH3 and SO2 and NOx regimes. Given the continued reduction of SO2 and NOx emissions due to U.S. regulations mainly aimed at PM2.5 reduction, the present results are important towards better assessing the environmental impact of emission controlling policies.

SELECTION OF CITATIONS
SEARCH DETAIL
...