Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28314848

ABSTRACT

BACKGROUND: After defibrillation of initial ventricular fibrillation (VF), it is crucial to prevent refibrillation to ensure successful resuscitation outcomes. Inability of the late Na+ current to inactivate leads to intracellular Ca2+ dysregulation and arrhythmias. Our aim was to determine the effects of ranolazine and GS-967, inhibitors of the late Na+ current, on ventricular refibrillation. METHODS AND RESULTS: Long-duration VF was induced electrically in Langendorff-perfused rabbit hearts (n=22) and terminated with a defibrillator after 6 minutes. Fibrillating hearts were randomized into 3 groups: treatment with ranolazine, GS-967, or nontreated controls. In the treated groups, hearts were perfused with ranolazine or GS-967 at 2 minutes of VF. In control experiments, perfusion solution was supplemented with isotonic saline in lieu of a drug. Inducibility of refibrillation was assessed after initial long-duration VF by attempting to reinduce VF. Sustained refibrillation was successful in fewer ranolazine-treated (29.17%; P=0.005) or GS-967-treated (45.83%, P=0.035) hearts compared with that in nontreated control hearts (84.85%). In GS-967-treated hearts, significantly more spontaneous termination of initial long-duration VF was observed (66.67%; P=0.01). Ca2+ transient duration was reduced in ranolazine-treated hearts compared with that in controls (P=0.05) and also Ca2+ alternans (P=0.03). CONCLUSIONS: Late Na+ current inhibition during long-duration VF reduces the susceptibility to subsequent refibrillation, partially by mitigating dysregulation of intracellular Ca2+. These results suggest the potential therapeutic use of ranolazine and GS-967 and call for further testing in cardiac arrest models.


Subject(s)
Calcium Channels/drug effects , Calcium/metabolism , Electric Countershock/methods , Ranolazine/pharmacology , Sodium Channels/drug effects , Ventricular Fibrillation/therapy , Animals , Calcium Channels/metabolism , Disease Models, Animal , Heart Arrest/therapy , Logistic Models , Pyridines/pharmacology , Rabbits , Random Allocation , Reference Values , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Statistics, Nonparametric , Triazoles/pharmacology , Ventricular Fibrillation/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL