Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36900285

ABSTRACT

Tumour necrosis factor alpha (TNFα) is a multifunctional cytokine that plays a pivotal role in apoptosis, cell survival, as well as in inflammation and immunity. Although named for its antitumor properties, TNFα also has tumour-promoting properties. TNFα is often present in large quantities in tumours, and cancer cells frequently acquire resistance to this cytokine. Consequently, TNFα may increase the proliferation and metastatic potential of cancer cells. Furthermore, the TNFα-driven increase in metastasis is a result of the ability of this cytokine to induce the epithelial-to-mesenchymal transition (EMT). Overcoming the resistance of cancer cells to TNFα may have a potential therapeutic benefit. NF-κB is a crucial transcription factor mediating inflammatory signals and has a wide-ranging role in tumour progression. NF-κB is strongly activated in response to TNFα and contributes to cell survival and proliferation. The pro-inflammatory and pro-survival function of NF-κB can be disrupted by blocking macromolecule synthesis (transcription, translation). Consistently, inhibition of transcription or translation strongly sensitises cells to TNFα-induced cell death. RNA polymerase III (Pol III) synthesises several essential components of the protein biosynthetic machinery, such as tRNA, 5S rRNA, and 7SL RNA. No studies, however, directly explored the possibility that specific inhibition of Pol III activity sensitises cancer cells to TNFα. Here we show that in colorectal cancer cells, Pol III inhibition augments the cytotoxic and cytostatic effects of TNFα. Pol III inhibition enhances TNFα-induced apoptosis and also blocks TNFα-induced EMT. Concomitantly, we observe alterations in the levels of proteins related to proliferation, migration, and EMT. Finally, our data show that Pol III inhibition is associated with lower NF-κB activation upon TNFα treatment, thus potentially suggesting the mechanism of Pol III inhibition-driven sensitisation of cancer cells to this cytokine.

2.
Sci Rep ; 7(1): 8842, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821798

ABSTRACT

We recently reported an atypical epithelial mesenchymal transition (EMT) in human hepatoma cell culture Huh7.5, which was non-responsive to the canonical EMT-transcription factors. Here we characterize major pathways regulating this atypical EMT through whole genome transcriptome profiling and molecular analysis, and identify a unique regulation of EMT by GSK-3ß. Our analysis reveals remarkable suppression of several key liver-specific markers in Huh7.5M cells indicating that EMT not only changes the epithelial properties, but alters the characteristics associated with hepatocytes as well. One key finding of this study is that GSK-3ß, a known antagonist to ß-Catenin signaling and a major pro-apoptotic regulator, is critical for the maintenance of EMT in Huh7.5M cells as its inhibition reversed EMT. Importantly, through these studies we identify that maintenance of EMT by GSK-3ß in Huh7.5M is regulated by p38MAPK and ERK1/2 that has not been reported elsewhere and is distinct from another metastatic non-hepatic cell line MDA-MB-231. These data showcase the existence of non-canonical mechanisms behind EMT. The atypicalness of this system underlines the existence of tremendous diversity in cancer-EMT and warrants the necessity to take a measured approach while dealing with metastasis and cancer drug resistance.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Epithelial-Mesenchymal Transition , Glycogen Synthase Kinase 3 beta/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Extracellular Matrix/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Integrins/metabolism , Liver Neoplasms/genetics , NF-kappa B/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...