Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(4): 5211-5222, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35072445

ABSTRACT

Single-ion conducting polymer electrolytes (SIPE) are particularly promising electrolyte materials in lithium metal-based batteries since theoretical considerations suggest that the immobilization of anions avoids polarization phenomena at electrode|electrolyte interfaces. SIPE in principle could allow for fast charging while preventing cell failure induced by short circuits arising from the growth of inhomogeneous Li depositions provided that SIPE membranes possess sufficient mechanical stability. To date, different chemical structures are developed for SIPE, where new compounds are often reported through electrochemical characterization at low current rates. Experimental counterparts to model-based assumptions and determination of system limitations by correlating both models and experiments are rare in the literature. Herein, Chazalviel's model, which is derived from ion concentration gradients, is applied to theoretically determine the limiting current density (JLim) of a SIPE. Comparison with the experimentally obtained JLim reveals a large deviation between the theoretical and practical values. Beyond that, charge-discharge profiles show a distinct arcing behavior at moderate current densities (0.5 to 1 mA cm-2), indicating polarization of the cell, which is not so far reported for SIPE. In this context, by application of various electrochemical and physiochemical methods, the details of cell polarization and the role of the solid electrolyte interphase in producing arcing behavior in the voltage profiles in stripping/plating experiments are revealed, which eventually also elucidate the inconsistency of JLim.

2.
Small ; 16(35): e2002528, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32734717

ABSTRACT

This work reports the facile synthesis of nonaqueous zinc-ion conducting polymer electrolyte (ZIP) membranes using an ultraviolet (UV)-light-induced photopolymerization technique, with room temperature (RT) ionic conductivity values in the order of 10-3 S cm-1 . The ZIP membranes demonstrate excellent physicochemical and electrochemical properties, including an electrochemical stability window of >2.4 V versus Zn|Zn2+ and dendrite-free plating/stripping processes in symmetric Zn||Zn cells. Besides, a UV-polymerization-assisted in situ process is developed to produce ZIP (abbreviated i-ZIP), which is adopted for the first time to fabricate a nonaqueous zinc-metal polymer battery (ZMPB; VOPO4 |i-ZIP|Zn) and zinc-metal hybrid polymer supercapacitor (ZMPS; activated carbon|i-ZIP|Zn) cells. The VOPO4 cathode employed in ZMPB possesses a layered morphology, exhibiting a high average operating voltage of ≈1.2 V. As compared to the conventional polymer cell assembling approach using the ex situ process, the in situ process is simple and it enhances the overall electrochemical performance, which enables the widespread intrusion of ZMPBs and ZMPSs into the application domain. Indeed, considering the promising aspects of the proposed ZIP and its easy processability, this work opens up a new direction for the emergence of the zinc-based energy storage technologies.

3.
ACS Appl Mater Interfaces ; 12(1): 567-579, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31825198

ABSTRACT

Novel cross-linked polymer electrolytes (XPEs) are synthesized by free-radical copolymerization induced by ultraviolet (UV)-light irradiation of a reactive solution, which is composed of a difunctional poly(ethylene glycol) diallyl ether oligomer (PEGDAE), a monofunctional reactive diluent 4-vinyl-1,3-dioxolan-2-one (VEC), and a stock solution containing lithium salt (lithium bis(trifluoromethanesulfonyl)imide, LiTFSI) in a carbonate-free nonvolatile plasticizer, poly(ethylene glycol) dimethyl ether (PEGDME). The resulting polymer matrix can be represented as a linear polyethylene chain functionalized with cyclic carbonate (dioxolanone) moieties and cross-linked by ethylene oxide units. A series of XPEs are prepared by varying the [O]/[Li] ratio (24 to 3) of the stock solution and thoroughly characterized using physicochemical (thermogravimetric analysis-mass spectrometry, differential scanning calorimetry, NMR, etc.) and electrochemical techniques. In addition, quantum chemical calculations are performed to elucidate the correlation between the electrochemical oxidation potential and the lithium ion-ethylene oxide coordination in the stock solution. Later, lithium bis(fluorosulfonyl)imide (LiFSI) salt is incorporated into the electrolyte system to produce a dual-salt XPE that exhibits improved electrochemical performance, a stable interface against lithium metal, and enhanced physical and chemical characteristics to be employed against high-voltage cathodes. The XPE membranes demonstrated excellent resistance against lithium dendrite growth even after reversibly plating and stripping lithium ions for more than 1000 h with a total capacity of 0.5 mAh cm-2. Finally, the XPE films are assembled in a lab-scale lithium metal battery configuration by using carbon-coated LiFePO4 (LFP) or LiNi0.8Co0.15Al0.05O2 (NCA) as a cathode and galvanostatically cycled at 20, 40, and 60 °C. Remarkably, at 20 °C, the NCA-based lithium metal cells displayed excellent cycling stability and good capacity retention (>50%) even after 1000 cycles.

4.
Langmuir ; 35(25): 8210-8219, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31125520

ABSTRACT

We report a thorough, multitechnique investigation of the structure and transport properties of a UV-cross-linked polymer electrolyte based on poly(ethylene oxide), tetra(ethylene glycol)dimethyl ether (G4), and lithium bis(trifluoromethane)sulfonimide. The properties of the cross-linked polymer electrolyte are compared to those of a non-cross-linked sample of same composition. The effect of UV-induced cross-linking on the physico/chemical characteristics is evaluated by X-ray diffraction, differential scanning calorimetry, shear rheology, 1H and 7Li magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, 19F and 7Li pulsed field gradient stimulated echo NMR analyses, electrochemical impedance spectroscopy, and Fourier transform Raman spectroscopy. Comprehensive analysis confirms that UV-induced cross-linking is an effective technique to suppress the crystallinity of the polymer matrix and reduce ion aggregation, yielding improved Li+ transport number (>0.5) and ionic conductivity (>0.1 mS cm?1) at ambient temperature, by tailoring the structural/morphological characteristics of the polymer matrix. Finally, the polymer electrolyte allows reversible operation with stable profile for hundreds of cycles upon galvanostatic test at ambient temperature of LiFePO4-based lithium-metal cells, which deliver full capacity at 0.05 or 0.1C current rate and keep high rate capabilities up to 1C. This enforces the role of UV-induced cross-linking in achieving excellent electrochemical characteristics, exploiting a practical, easy up-scalable process.

5.
Sci Rep ; 6: 19892, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26791572

ABSTRACT

Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm(-1) are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li(+)), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...