Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuromuscul Dis ; 9(3): 423-436, 2022.
Article in English | MEDLINE | ID: mdl-35466946

ABSTRACT

BACKGROUND: Muscles of boys with Duchenne muscular dystrophy (DMD) are progressively replaced by fatty fibrous tissues, and weakness leads to loss of ambulation (LoA). Step activity (SA) monitoring is a quantitative measure of real-world ambulatory function. The relationship between quality of muscle health and SA is unknown in DMD. OBJECTIVE: To determine SA in steroid treated boys with DMD across various age groups, and to evaluate the association of SA with quality of muscle health and ambulatory function. METHODS: Quality of muscle health was measured by magnetic resonance (MR) imaging transverse magnetization relaxation time constant (MRI-T2) and MR spectroscopy fat fraction (MRS-FF). SA was assessed via accelerometry, and functional abilities were assessed through clinical walking tests. Correlations between SA, MR, and functional measures were determined. A threshold value of SA was determined to predict the future LoA. RESULTS: The greatest reduction in SA was observed in the 9- < 11years age group. SA correlated with all functional and MR measures.10m walk/run test had the highest correlation with SA. An increase in muscle MRI-T2 and MRS-FF was associated with a decline in SA. Two years prior to LoA, SA in boys with DMD was 32% lower than age matched boys with DMD who maintained ambulation for more than two-year period. SA monitoring can predict subsequent LoA in Duchenne, as a daily step count of 3200 at baseline was associated with LoA over the next two-years. CONCLUSION: SA monitoring is a feasible and accessible tool to measure functional capacity in the real-world environment.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Male , Muscle, Skeletal , Physical Functional Performance
2.
J Neurosci ; 41(48): 9906-9918, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34670851

ABSTRACT

The auditory cortex (AC) sends long-range projections to virtually all subcortical auditory structures. One of the largest and most complex of these-the projection between AC and inferior colliculus (IC; the corticocollicular pathway)-originates from layer 5 and deep layer 6. Though previous work has shown that these two corticocollicular projection systems have different physiological properties and network connectivities, their functional organization is poorly understood. Here, using a combination of traditional and viral tracers combined with in vivo imaging in both sexes of the mouse, we observed that layer 5 and layer 6 corticocollicular neurons differ in their areas of origin and termination patterns. Layer 5 corticocollicular neurons are concentrated in primary AC, while layer 6 corticocollicular neurons emanate from broad auditory and limbic areas in the temporal cortex. In addition, layer 5 sends dense projections of both small and large (>1 µm2 area) terminals to all regions of nonlemniscal IC, while layer 6 sends small terminals to the most superficial 50-100 µm of the IC. These findings suggest that layer 5 and 6 corticocollicular projections are optimized to play distinct roles in corticofugal modulation. Layer 5 neurons provide strong, rapid, and unimodal feedback to the nonlemniscal IC, while layer 6 neurons provide heteromodal and limbic modulation diffusely to the nonlemniscal IC. Such organizational diversity in the corticocollicular pathway may help to explain the heterogeneous effects of corticocollicular manipulations and, given similar diversity in corticothalamic pathways, may be a general principle in top-down modulation.SIGNIFICANCE STATEMENT We demonstrate that a major descending system in the brain is actually two systems. That is, the auditory corticocollicular projection, which exerts considerable influence over the midbrain, comprises two projections: one from layer 5 and the other from layer 6. The layer 6 projection is diffusely organized, receives multisensory inputs, and ends in small terminals; while the layer 5 projection is derived from a circumscribed auditory cortical area and ends in large terminals. These data suggest that the varied effects of cortical manipulations on the midbrain may be related to effects on two disparate systems. These findings have broader implications because other descending systems derive from two layers. Therefore, a duplex organization may be a common motif in descending control.


Subject(s)
Auditory Cortex/anatomy & histology , Auditory Pathways/anatomy & histology , Animals , Female , Male , Mice , Mice, Inbred BALB C
3.
Phys Ther ; 100(11): 2035-2048, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32737968

ABSTRACT

Duchenne muscular dystrophy (DMD) is a muscle degenerative disorder that manifests in early childhood and results in progressive muscle weakness. Physical therapists have long been an important component of the multidisciplinary team caring for people with DMD, providing expertise in areas of disease assessment, contracture management, assistive device prescription, and exercise prescription. Over the last decade, magnetic resonance imaging of muscles in people with DMD has led to an improved understanding of the muscle pathology underlying the clinical manifestations of DMD. Findings from magnetic resonance imaging (MRI) studies in DMD, paired with the clinical expertise of physical therapists, can help guide research that leads to improved physical therapist care for this unique patient population. The 2 main goals of this perspective article are to (1) summarize muscle pathology and disease progression findings from qualitative and quantitative muscle MRI studies in DMD and (2) link MRI findings of muscle pathology to the clinical manifestations observed by physical therapists with discussion of any potential implications of MRI findings on physical therapy management.


Subject(s)
Magnetic Resonance Imaging , Muscle Weakness/pathology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Physical Therapy Modalities , Child , Disease Progression , Humans , Male
4.
Front Physiol ; 9: 1268, 2018.
Article in English | MEDLINE | ID: mdl-30233418

ABSTRACT

Diabetic patients suffer from a host of physiological abnormalities beyond just those of glucose metabolism. These abnormalities often lead to systemic inflammation via modulation of several inflammation-related genes, their respective gene products, homocysteine metabolism, and pyroptosis. The very nature of this homeostatic disruption re-sets the overall physiology of diabetics via upregulation of immune responses, enhanced retinal neovascularization, upregulation of epigenetic events, and disturbances in cells' redox regulatory system. This altered pathophysiological milieu can lead to the development of diabetic retinopathy (DR), a debilitating vision-threatening eye condition with microvascular complications. DR is the most prevalent cause of irreversible blindness in the working-age adults throughout the world as it can lead to severe structural and functional remodeling of the retina, decreasing vision and thus diminishing the quality of life. In this manuscript, we attempt to summarize recent developments and new insights to explore the very nature of this intertwined crosstalk between components of the immune system and their metabolic orchestrations to elucidate the pathophysiology of DR. Understanding the multifaceted nature of the cellular and molecular factors that are involved in DR could reveal new targets for effective diagnostics, therapeutics, prognostics, preventive tools, and finally strategies to combat the development and progression of DR in susceptible subjects.

SELECTION OF CITATIONS
SEARCH DETAIL
...