Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 40(1): e3396, 2024.
Article in English | MEDLINE | ID: mdl-37843824

ABSTRACT

Metastasis is the process by which cancer cells move from the primary location to establish themselves in a new location in the human body. It is still a significant challenge in cancer management because it is responsible for 90% of cancer-related deaths. In this work, we present an idea to use shear stress encountered by all metastasizing cells as an elegant means to deactivate metastasizing cancer cells. Shear-induced ROS and cross-talk between ROS and miRNA play crucial roles in deactivating metastasizing cancer cells. In addition, there exists a vast therapeutic potential for miRNAs. Therefore, this study explores the effect of shear on miRNAs and reactive oxygen species (ROS), the two molecular mediators in the proposed {shear-stress}-{miRNA}-{metastasizing-cancer-cell-deactivation} approach. In this context, to understand the effect of defined shear on HCT116 colon cancer cells, they were cultivated in a defined shear environment provided by an appropriately designed and fabricated cone-and-plate device. Shear rate affected the culture growth characteristics and the specific intracellular reactive oxygen species level (si-ROS). HCT116 cell growth was observed at 0 and 0.63 s-1 but not at 1.57 s-1 or beyond. Shear rate induced upregulation of the hsa-miR-335-5p but induced downregulation of hsa-miR-34a-5p. Furthermore, the specific levels of hsa-miR-335-5p, hsa-miR-26b-5p, and hsa-miR-34a-5p negatively correlated with specific intracellular (si)-hydroxyl radical levels. In addition, some messenger RNAs (mRNAs) in HCT116 cells showed a differential expression under shear stress, notably the ROS-associated mRNA of PMAIP1. The above miRNAs (and possibly some mRNAs) could be targeted to manage colon cancer metastasis.


Subject(s)
Colonic Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism , Down-Regulation , HCT116 Cells , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...