Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Bioinformatics ; 2016: 9258578, 2016.
Article in English | MEDLINE | ID: mdl-27190510

ABSTRACT

Amyloidogenic pathway in Alzheimer's disease (AD) involves breakdown of APP by ß-secretase followed by γ-secretase and results in formation of amyloid beta plaque. ß-secretase has been a promising target for developing novel anti-Alzheimer drugs. To test different molecules for this purpose, test ligands like acylguanidine 7a, rosiglitazone, pioglitazone, and tartaric acid were docked against our target protein ß-secretase enzyme retrieved from Protein Data Bank, considering MK-8931 (phase III trial, Merck) as the positive control. Docking revealed that, with respect to their free binding energy, acylguanidine 7a has the lowest binding energy followed by MK-8931 and pioglitazone and binds significantly to ß-secretase. In silico ADMET predictions revealed that except tartaric acid all other compounds had minimal toxic effects and had good absorption as well as solubility characteristics. These compounds may serve as potential lead compound for developing new anti-Alzheimer drug.

2.
J Formos Med Assoc ; 115(1): 3-10, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26220908

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline, i.e., dementia. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as deposits of ß-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, dyshomeostasis of bio-metals, low levels of acetylcholine, etc. AD is not simple to diagnose since there is no single diagnostic test for it. Pharmacotherapy for AD currently provides only symptomatic relief and mostly targets cognitive revival. Computational biology approaches have proved to be reliable tools for the selection of novel targets and therapeutic ligands. Molecular docking is a key tool in computer-assisted drug design and development. Docking has been utilized to perform virtual screening on large libraries of compounds, and propose structural hypotheses of how the ligands bind with the target with lead optimization. Another potential application of docking is optimization stages of the drug-discovery cycle. This review summarizes the known drug targets of AD, in vivo active agents against AD, state-of-the-art docking studies done in AD, and future prospects of the docking with particular emphasis on AD.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Drug Design , Molecular Docking Simulation , Brain/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...