Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 124: 104839, 2021 12.
Article in English | MEDLINE | ID: mdl-34547607

ABSTRACT

Polymeric hydrogels continue to find a wide range of applications. However, a major drawback of hydrogels is the lack of mechanical strength. In this regard, "Double Network Hydrogels" (DN) have shown great promise recently. The toughness in DN hydrogels originates from the synergistic effect of two polymeric networks. In this work, we have synthesized a DN hydrogel consisting of a tightly cross linked carboxymethylcellulose (CMC) as the first network and loosely cross linked poly(hydroxyethylacrylate) (PHEA) as a second network (CMC-PHEA-DN). The required flexibility in the second network (PHEA) was induced by the presence of a small amount of stearyl methacrylate (SM) as a co-monomer in hydroxyl ethyl acrylate (HEA). The compressive strength of the CMC-PEHA-DN hydrogel was found to be 280 times more than that of CMC-SN hydrogel, and the presence of SM in DN hydrogels showed better recovery after deformation. Cell viability studies showed the biocompatibility of DN hydrogels. The micro-structural analysis of DN xerogels by 3D X-ray Microtomography indicated the presence of oriented pores in size range of 30-40 µm. To the best of our knowledge, Microtomography was used for the first time to study the DN gels. These hydrogels can be used to develop implants that can withstand prolonged stress and expand the life span of implants.


Subject(s)
Biocompatible Materials , Hydrogels , Acrylates , Carboxymethylcellulose Sodium , Compressive Strength
2.
Angew Chem Int Ed Engl ; 55(50): 15604-15608, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27862737

ABSTRACT

Covalent organic nanosheets (CONs) are a new class of porous thin two-dimensional (2D) nanostructures that can be easily designed and functionalized and could be useful for separation applications. Poor dispersion, layer restacking, and difficult postsynthetic modifications are the major hurdles that need to be overcome to fabricate scalable CON thin films. Herein, we present a unique approach for the chemical exfoliation of an anthracene-based covalent organic framework (COF) to N-hexylmaleimide-functionalized CONs, to yield centimeter-sized free-standing thin films through layer-by-layer CON assembly at the air-water interface. The thin-layer fabrication technique presented here is simple, scalable, and does not require any surfactants or stabilizing agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...