Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 7(9): 862-7, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27660692

ABSTRACT

Optimization of isoquinolinone PI3K inhibitors led to the discovery of a potent inhibitor of PI3K-γ (26 or IPI-549) with >100-fold selectivity over other lipid and protein kinases. IPI-549 demonstrates favorable pharmacokinetic properties and robust inhibition of PI3K-γ mediated neutrophil migration in vivo and is currently in Phase 1 clinical evaluation in subjects with advanced solid tumors.

2.
J Med Chem ; 55(20): 8859-78, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23025805

ABSTRACT

Misregulation of protein translation plays a critical role in human cancer pathogenesis at many levels. Silvestrol, a cyclopenta[b]benzofuran natural product, blocks translation at the initiation step by interfering with assembly of the eIF4F translation complex. Silvestrol has a complex chemical structure whose functional group requirements have not been systematically investigated. Moreover, silvestrol has limited development potential due to poor druglike properties. Herein, we sought to develop a practical synthesis of key intermediates of silvestrol and explore structure-activity relationships around the C6 position. The ability of silvestrol and analogues to selectively inhibit the translation of proteins with high requirement on the translation-initiation machinery (i.e., complex 5'-untranslated region UTR) relative to simple 5'UTR was determined by a cellular reporter assay. Simplified analogues of silvestrol such as compounds 74 and 76 were shown to have similar cytotoxic potency and better ADME characteristics relative to those of silvestrol.


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Synthesis Inhibitors/chemical synthesis , Triterpenes/chemical synthesis , 5' Untranslated Regions , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Genes, Reporter , Humans , Luciferases/biosynthesis , Luciferases/genetics , Mice , Microsomes, Liver/metabolism , Protein Synthesis Inhibitors/pharmacokinetics , Protein Synthesis Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship , Triterpenes/pharmacokinetics , Triterpenes/pharmacology
3.
J Med Chem ; 52(14): 4400-18, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19522463

ABSTRACT

Recent evidence suggests that blocking aberrant hedgehog pathway signaling may be a promising therapeutic strategy for the treatment of several types of cancer. Cyclopamine, a plant Veratrum alkaloid, is a natural product antagonist of the hedgehog pathway. In a previous report, a seven-membered D-ring semisynthetic analogue of cyclopamine, IPI-269609 (2), was shown to have greater acid stability and better aqueous solubility compared to cyclopamine. Further modifications of the A-ring system generated three series of analogues with improved potency and/or solubility. Lead compounds from each series were characterized in vitro and evaluated in vivo for biological activity and pharmacokinetic properties. These studies led to the discovery of IPI-926 (compound 28), a novel semisynthetic cyclopamine analogue with substantially improved pharmaceutical properties and potency and a favorable pharmacokinetic profile relative to cyclopamine and compound 2. As a result, complete tumor regression was observed in a Hh-dependent medulloblastoma allograft model after daily oral administration of 40 mg/kg of compound 28.


Subject(s)
Drug Discovery , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Signal Transduction/drug effects , Veratrum Alkaloids/administration & dosage , Veratrum Alkaloids/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Humans , Liver/cytology , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Microsomes/drug effects , Microsomes/metabolism , Stereoisomerism , Veratrum Alkaloids/chemistry , Veratrum Alkaloids/pharmacokinetics
4.
J Med Chem ; 51(21): 6646-9, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18842035

ABSTRACT

Herein is reported the synthesis of a novel class of hedgehog antagonists derived from cyclopamine. The acid sensitive D-ring of cyclopamine was homologated utilizing a sequence of chemoselective cyclopropanation and stereoselective acid-catalyzed rearrangement. Further modification of the A/B-ring homoallylic alcohol to the conjugated ketone led to the discovery of new cyclopamine analogues with improved pharmaceutical properties and in vitro potency (EC 50) ranging from 10 to 1000 nM.


Subject(s)
Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Signal Transduction/drug effects , Veratrum Alkaloids/chemical synthesis , Administration, Oral , Molecular Structure , Structure-Activity Relationship , Veratrum Alkaloids/administration & dosage , Veratrum Alkaloids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...