Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 252: 109681, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31629177

ABSTRACT

Solid Waste Management (SWM) in high altitude regions is critically phased because of the non-availability of suitable facilities for the treatment and handling of large quantities of Municipal Solid Waste (MSW). Open burning practices at hill slopes were noticed which affect the surrounding environment. Hence, it became essential to measure the environmental components around the dumpsites to examine the impacts and suggest new technological solutions. The pollution parameters were monitored in and around the dumpsites, and the data was analysed using statistical tools. The assessment of air quality indicated maximum fine suspended particulate matter (PM2.5) concentration of 206.66 µg/m3 followed by respairable particulate matter (PM10), oxides of nitrogen (NOx) and sulphur dioxide (SO2). Among the gaseous emissions, methane (CH4) concentration was very high (38.53 mg/L) followed by carbon monoxide (CO) concentration (0.96 mg/L). Volatile organic compounds (VOCs) were also detected at few dumpsites with highest observed benzene (C6H6) concentration of 157.53 µg/m3. The soil sample analysis indicated that iron (Fe) concentration dominates followed by manganese (Mn), zinc (Zn), chromium (Cr), copper (Cu), and nickel (Ni). For evaluation of different alternatives for the SWM system, Rapid Impact Assessment Matrix (RIAM) was applied.


Subject(s)
Air Pollutants , Air Pollution , Altitude , Environmental Monitoring , Particulate Matter , Solid Waste
2.
Bioresour Technol ; 217: 90-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27005793

ABSTRACT

The performance of a laboratory-scale anaerobic bioreactor was investigated in the present study to determine methane (CH4) content in biogas yield from digestion of organic fraction of municipal solid waste (OFMSW). OFMSW consists of food waste, vegetable waste and yard trimming. An organic loading between 40 and 120kgVS/m(3) was applied in different runs of the bioreactor. The study was aimed to focus on the effects of various factors, such as pH, moisture content (MC), total volatile solids (TVS), volatile fatty acids (VFAs), and CH4 fraction on biogas production. OFMSW witnessed high CH4 yield as 346.65LCH4/kgVS added. A target of 60-70% of CH4 fraction in biogas was set as an optimized condition. The experimental results were statistically optimized by application of ANN model using free forward back propagation in MATLAB environment.


Subject(s)
Biofuels , Bioreactors , Laboratories , Methane/biosynthesis , Neural Networks, Computer , Anaerobiosis , Cities , Fatty Acids, Volatile/analysis , Food , Hydrogen-Ion Concentration , Organic Chemicals/analysis , Principal Component Analysis , Solid Waste/analysis , Waste Products
3.
Environ Technol ; 37(20): 2627-37, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26915419

ABSTRACT

Solid waste management (SWM) is one of the most challenging issues owing to lack of authentic data on different elements of SWM, namely, storage, collection, transportation, separation, processing and disposal. This study presents an assessment of existing status of SWM in conjunction with municipal solid waste (MSW) generation rates, physical and chemical characterization of MSW in high-altitude sub-tropical regions. Weighing of empty and fully loaded trucks per trip revealed total quantity of MSW collected. The average efficiency of MSW collection was 70%. From the baseline data, it is inferred that the population and MSW generation rates are not co-related. The collected MSW included biodegradables (organic wastes), paper, plastic, glass, ceramics, metals, inert materials, ash and debris. The data analysis indicated that the biodegradable components dominate the characterization at 54.83% followed by inert, ash and debris at 21.06%, paper at 8.77%, plastic at 8.18%, glass and ceramics at 4.45% and metals at 2.71%. Statistical measures were also applied and 90% confidence interval (CI) was generated for the characterization data measuring its statistical significance.


Subject(s)
Solid Waste , Waste Management/methods , Altitude , Environment , India
SELECTION OF CITATIONS
SEARCH DETAIL
...