Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 901: 166461, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37607630

ABSTRACT

Aerosol-bound water, a ubiquitous and abundant component of atmospheric aerosols, has an impact on regional climate, visibility, human health, the hydrological cycle, and atmospheric chemistry. Yet, the intricate relationship between aerosol liquid water (ALWC) and chemical composition and relative humidity (RH) was not well understood. The present study explores ALWC derived from the ISORROPIA II model using real-time, high-resolution data of non-refractory submicron chemical species and meteorological parameters (temperature and RH) collected over the Indian Ocean as part of the ICARB (Integrated Campaign for Aerosols, Gases, and Radiation Budget)-2018 experiment. Results show that ALWC values over the South Eastern Arabian Sea (SEAS) were found to be higher by 4-6 times than those observed over the Equatorial Indian Ocean (EIO) due to a large decrease in aerosol loading from SEAS to EIO. ALWC peaked in the early morning hours (4:00-7:00), with greater values during the nighttime and lower values during the daytime across SEAS, which is comparable with RH variation. While the ratio of organics-to-SO42- mass fraction linearly decreased with increasing mass-based growth factors (MGFs) over EIO, such a scenario was not observed over SEAS. The latitudinal gradient of mass fraction of ALWC had shown a decrease towards EIO, consistent with organic fraction. The extinction coefficient of the dry mass of submicron particles is noticeably increased by 40 % by ALWC over SEAS and EIO. Moreover, ALWC could enhance the aerosol negative forcing by an average of 66 % (64 %) over SEAS (EIO) at the top of the atmosphere during the cruise period. These inferences imply that ALWC is the key factor in assessing the role of aerosols on atmospheric radiative forcing. Overall, the present study highlights the serious need to consider the ALWC in climate forcing simulations, particularly in moist tropical environments where their effect can be significant.

2.
Sci Rep ; 10(1): 18360, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33110106

ABSTRACT

Atmospheric aerosols play an important role in the formation of warm clouds by acting as efficient cloud condensation nuclei (CCN) and their interactions are believed to cool the Earth-Atmosphere system ('first indirect effect or Twomey effect') in a highly uncertain manner compared to the other forcing agents. Here we demonstrate using long-term (2003-2016) satellite observations (NASA's A-train satellite constellations) over the northern Indian Ocean, that enhanced aerosol loading (due to anthropogenic emissions) can reverse the first indirect effect significantly. In contrast to Twomey effect, a statistically significant increase in cloud effective radius (CER, µm) is observed with respect to an increase in aerosol loading for clouds having low liquid water path (LWP < 75 g m-2) and drier cloud tops. Probable physical mechanisms for this effect are the intense competition for available water vapour due to higher concentrations of anthropogenic aerosols and entrainment of dry air on cloud tops. For such clouds, cloud water content showed a negative response to cloud droplet number concentrations and the estimated intrinsic radiative effect suggest a warming at the Top of the Atmosphere. Although uncertainties exist in quantifying aerosol-cloud interactions (ACI) using satellite observations, present study indicates the physical existence of anti-Twomey effect over the northern Indian Ocean during south Asian outflow.

SELECTION OF CITATIONS
SEARCH DETAIL
...