Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37896540

ABSTRACT

Carbon nanotube (CNT) sensors provide a versatile chemical platform for ambient monitoring of ozone (O3) and nitrogen dioxide (NO2), two important airborne pollutants known to cause acute respiratory and cardiovascular health problems. CNTs have shown great potential for use as sensing layers due to their unique properties, including high surface to volume ratio, numerous active sites and crystal facets with high surface reactivity, and high thermal and electrical conductivity. With operational advantages such as compactness, low-power operation, and easy integration with electronics devices, nanotechnology is expected to have a significant impact on portable low-cost environmental sensors. Enhanced sensitivity is feasible by functionalizing the CNTs with polymers, metals, and metal oxides. This paper focuses on the design and performance of a two-element array of O3 and NO2 sensors comprising single-walled CNTs functionalized by covalent modification with organic functional groups. Unlike the conventional chemiresistor in which the change in DC resistance across the sensor terminals is measured, we characterize the sensor array response by measuring both the magnitude and phase of the AC impedance. Multivariate response provides higher degrees of freedom in sensor array data processing. The complex impedance of each sensor is measured at 5 kHz in a controlled gas-flow chamber using gas mixtures with O3 in the 60-120 ppb range and NO2 between 20 and 80 ppb. The measured data reveal response change in the 26-36% range for the O3 sensor and 5-31% for the NO2 sensor. Multivariate optimization is used to fit the laboratory measurements to a response surface mathematical model, from which sensitivity and selectivity are calculated. The ozone sensor exhibits high sensitivity (e.g., 5 to 6 MΩ/ppb for the impedance magnitude) and high selectivity (0.8 to 0.9) for interferent (NO2) levels below 30 ppb. However, the NO2 sensor is not selective.

2.
IEEE Trans Biomed Circuits Syst ; 10(6): 1037-1046, 2016 12.
Article in English | MEDLINE | ID: mdl-27071191

ABSTRACT

Ultra wideband (UWB) Doppler radar has many biomedical applications, including remote diagnosis of cardiovascular disease, triage and real-time personnel tracking in rescue missions. It uses narrow pulses to probe the human body and detect tiny cardiopulmonary movements by spectral analysis of the backscattered electromagnetic (EM) field. With the help of super-resolution spectral algorithms, UWB radar is capable of increased accuracy for estimating vital signs such as heart and respiration rates in adverse signal-to-noise conditions. A major challenge for biomedical radar systems is detecting the heartbeat of a subject with high accuracy, because of minute thorax motion (less than 0.5 mm) caused by the heartbeat. The problem becomes compounded by EM clutter and noise in the environment. In this paper, we introduce a new algorithm based on the state space method (SSM) for the extraction of cardiac and respiration rates from UWB radar measurements. SSM produces range-dependent system poles that can be classified parametrically with spectral peaks at the cardiac and respiratory frequencies. It is shown that SSM produces accurate estimates of the vital signs without producing harmonics and inter-modulation products that plague signal resolution in widely used FFT spectrograms.


Subject(s)
Heart Rate/physiology , Respiratory Rate/physiology , Ultrasonography, Doppler/methods , Algorithms , Heart/diagnostic imaging , Humans , Signal-To-Noise Ratio , Ultrasonography, Doppler/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...