ABSTRACT
Household air pollution from the burning of biomass fuels is recognized as the third greatest contributor to the global burden of disease. Incomplete combustion of biomass fuels releases a complex mixture of carbon monoxide (CO), particulate matter (PM) and other toxins into the household environment. Some investigators have used indoor CO concentrations as a reliable surrogate of indoor PM concentrations; however, the assumption that indoor CO concentration is a reasonable proxy of indoor PM concentration has been a subject of controversy. We sought to describe the relationship between indoor PM2.5 and CO concentrations in 128 households across three resource-poor settings in Peru, Nepal, and Kenya. We simultaneously collected minute-to-minute PM2.5 and CO concentrations within a meter of the open-fire stove for approximately 24h using the EasyLog-USB-CO data logger (Lascar Electronics, Erie, PA) and the personal DataRAM-1000AN (Thermo Fisher Scientific Inc., Waltham, MA), respectively. We also collected information regarding household construction characteristics, and cooking practices of the primary cook. Average 24h indoor PM2.5 and CO concentrations ranged between 615 and 1440 µg/m(3), and between 9.1 and 35.1 ppm, respectively. Minute-to-minute indoor PM2.5 concentrations were in a safe range (<25 µg/m(3)) between 17% and 65% of the time, and exceeded 1000 µg/m(3) between 8% and 21% of the time, whereas indoor CO concentrations were in a safe range (<7 ppm) between 46% and 79% of the time and exceeded 50 ppm between 4%, and 20% of the time. Overall correlations between indoor PM2.5 and CO concentrations were low to moderate (Spearman ρ between 0.59 and 0.83). There was also poor agreement and evidence of proportional bias between observed indoor PM2.5 concentrations vs. those estimated based on indoor CO concentrations, with greater discordance at lower concentrations. Our analysis does not support the notion that indoor CO concentration is a surrogate marker for indoor PM2.5 concentration across all settings. Both are important markers of household air pollution with different health and environmental implications and should therefore be independently measured.
Subject(s)
Air Pollution, Indoor/analysis , Biomass , Carbon Monoxide/analysis , Particulate Matter/analysis , Poverty , Cooking , Energy-Generating Resources , Housing/standards , Housing/statistics & numerical data , Kenya , Nepal , Peru , Rural Population/statistics & numerical dataABSTRACT
PURPOSE: The World Health Organization (WHO) case management algorithm for acute lower respiratory infections has moderate sensitivity and poor specificity for the diagnosis of pneumonia. We sought to determine the feasibility of using point-of-care ultrasound in resource-limited settings to identify pneumonia by general health practitioners and to determine agreement between the WHO algorithm and lung consolidations identified by point-of-care ultrasound. METHODS: An expert radiologist taught two general practitioners how to perform point-of-care ultrasound over a seven-day period. We then conducted a prospective study of children aged 2 months to 3 years in Peru and Nepal with and without respiratory symptoms, which were evaluated by point-of-care ultrasound to identify lung consolidation. RESULTS: We enrolled 378 children: 127 were controls without respiratory symptoms, 82 had respiratory symptoms without clinical pneumonia, and 169 had clinical pneumonia by WHO criteria. Point-of-care ultrasound was performed in the community (n = 180), in outpatient offices (n = 95), in hospital wards (n = 19), and in Emergency Departments (n = 84). Average time to perform point-of-care ultrasound was 6.4 ± 2.2 min. Inter-observer agreement for point-of-care ultrasound interpretation between general practitioners was high (κ = 0.79, 95 % CI 0.73-0.81). The diagnosis of pneumonia using the WHO algorithm yielded a sensitivity of 69.6 % (95 % CI 55.7-80.8 %), specificity of 59.6 % (95 % CI 54.0-65.0 %), and positive and negative likelihood ratios of 1.73 (95 % CI 1.39-2.15) and 0.51 (95 % CI 0.30-0.76) when lung consolidation on point-of-care ultrasound was used as the reference. CONCLUSIONS: The WHO algorithm disagreed with point-of-care ultrasound findings in more than one-third of children and had an overall low performance when compared with point-of-care ultrasound to identify lung consolidation. A paired approach with point-of-care ultrasound may improve case management in resource-limited settings.
Subject(s)
Algorithms , Developing Countries , General Practice , Pneumonia/diagnostic imaging , Child, Preschool , Female , Humans , Infant , Male , Nepal , Observer Variation , Peru , Point-of-Care Systems , Prospective Studies , Sensitivity and Specificity , Ultrasonography , World Health OrganizationABSTRACT
Global efforts are underway to develop and promote improved cookstoves which may reduce the negative health and environmental effects of burning solid fuels on health and the environment. Behavioral studies have considered cookstove user practices, needs and preferences in the design and implementation of cookstove projects; however, these studies have not examined the implications of the traditional stove use and design across multiple resource-poor settings in the implementation and promotion of improved cookstove projects that utilize a single, standardized stove design. We conducted in-depth interviews and direct observations of meal preparation and traditional, open-fire stove use of 137 women aged 20-49 years in Kenya, Peru and Nepal prior in the four-month period preceding installation of an improved cookstove as part of a field intervention trial. Despite general similarities in cooking practices across sites, we identified locally distinct practices and norms regarding traditional stove use and desired stove improvements. Traditional stoves are designed to accommodate specific cooking styles, types of fuel, and available resources for maintenance and renovation. The tailored stoves allow users to cook and repair their stoves easily. Women in each setting expressed their desire for a new stove, but they articulated distinct specific alterations that would meet their needs and preferences. Improved cookstove designs need to consider the diversity of values and needs held by potential users, presenting a significant challenge in identifying a "one size fits all" improved cookstove design. Our data show that a single stove design for use with locally available biomass fuels will not meet the cooking demands and resources available across the three sites. Moreover, locally produced or adapted improved cookstoves may be needed to meet the cooking needs of diverse populations while addressing health and environmental concerns of traditional stoves.
Subject(s)
Attitude/ethnology , Cooking/methods , Cultural Characteristics , Developing Countries , Household Articles , Adult , Cooking/instrumentation , Equipment Design , Female , Humans , Kenya , Middle Aged , Nepal , PeruABSTRACT
BACKGROUND: Exposure to biomass fuel smoke is one of the leading risk factors for disease burden worldwide. International campaigns are currently promoting the widespread adoption of improved cookstoves in resource-limited settings, yet little is known about the cultural and social barriers to successful improved cookstove adoption and how these barriers affect environmental exposures and health outcomes. DESIGN: We plan to conduct a one-year crossover, feasibility intervention trial in three resource-limited settings (Kenya, Nepal and Peru). We will enroll 40 to 46 female primary cooks aged 20 to 49 years in each site (total 120 to 138). METHODS: At baseline, we will collect information on sociodemographic characteristics and cooking practices, and measure respiratory health and blood pressure for all participating women. An initial observational period of four months while households use their traditional, open-fire design cookstoves will take place prior to randomization. All participants will then be randomized to receive one of two types of improved, ventilated cookstoves with a chimney: a commercially-constructed cookstove (Envirofit G3300/G3355) or a locally-constructed cookstove. After four months of observation, participants will crossover and receive the other improved cookstove design and be followed for another four months. During each of the three four-month study periods, we will collect monthly information on self-reported respiratory symptoms, cooking practices, compliance with cookstove use (intervention periods only), and measure peak expiratory flow, forced expiratory volume at 1 second, exhaled carbon monoxide and blood pressure. We will also measure pulmonary function testing in the women participants and 24-hour kitchen particulate matter and carbon monoxide levels at least once per period. DISCUSSION: Findings from this study will help us better understand the behavioral, biological, and environmental changes that occur with a cookstove intervention. If this trial indicates that reducing indoor air pollution is feasible and effective in resource-limited settings like Peru, Kenya and Nepal, trials and programs to modify the open burning of biomass fuels by installation of low-cost ventilated cookstoves could significantly reduce the burden of illness and death worldwide. TRIAL REGISTRATION: ClinicalTrials.gov NCT01686867.