Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurovirol ; 13(1): 78-84, 2007.
Article in English | MEDLINE | ID: mdl-17454452

ABSTRACT

Latency-associated transcript (LAT) significantly enhances the spontaneous reactivation phenotype of herpes simplex virus type 1 (HSV-1). The mechanism by which LAT accomplishes this has been elusive. To determine if LAT's antiapoptosis activity is involved, the authors used a rabbit eye model to analyze the spontaneous reactivation phenotype of an HSV-1 mutant in which LAT was replaced by an unrelated antiapoptosis gene. This virus, dLAT-cpIAP, contains the open reading frame of the baculovirus inhibitor of apoptosis protein gene (cpIAP) in place of LAT, under control of the LAT promoter. The authors report here that in a rabbit ocular model of infection, dLAT-cpIAP had a spontaneous reactivation phenotype similar to wild-type virus and significantly higher than LAT(-) viruses. This was consistent with their previous findings using the mouse trigeminal ganglia explant-induced reactivation model. Whether LAT (and in the case of dLAT-cpIAP, cpIAP) enhances the spontaneous reactivation phenotype by functioning during establishment of latency, maintenance of latency, or reactivation from latency, or during two or more of these periods, remains to be determined. Regardless, the results presented in this study strongly support the hypothesis that LAT's antiapoptosis activity is the dominant function that enhances HSV-1's spontaneous reactivation phenotype.


Subject(s)
Apoptosis/genetics , Herpesvirus 1, Human/physiology , Virus Activation , Virus Latency/genetics , Animals , Gene Expression Regulation, Viral , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Mutation , Phenotype , Rabbits , Virus Replication
2.
J Virol ; 79(19): 12286-95, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16160155

ABSTRACT

The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT- mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT- mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT- mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse.


Subject(s)
Baculoviridae/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Proteins/genetics , Viral Proteins/genetics , Virus Activation , Animals , Apoptosis , Cell Line , Female , Gene Deletion , Inhibitor of Apoptosis Proteins , Mice , MicroRNAs , Phenotype , Proteins/physiology , Rabbits , Recombination, Genetic , Trigeminal Ganglion/virology , Viral Proteins/physiology , Virus Replication
3.
J Virol Methods ; 118(1): 9-13, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15158063

ABSTRACT

Plasmids expressing the herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) reduce apoptosis in transient transfection assays in tissue culture. LAT also reduces apoptosis in the context of the virus in trigeminal ganglia of rabbits and mice at approximately 6-7 days post-infection during the switch from acute to latent HSV-1 infection, a time at which LAT is the only abundantly transcribed viral gene. Analysis of LAT's anti-apoptosis function is complicated in tissue culture by the expression of at least five additional viral gene products that can block apoptosis, and by the fact that apoptosis usually occurs in only a fraction of the cells. Here, we present two approaches for detecting LAT's anti-apoptosis activity in the context of the whole virus in tissue culture. Using a combination of serum starvation to both partially synchronize the cells and induce apoptosis, and Hoechst staining to detect chromatin condensation, we found that there was a small window of time post-infection during which Schwann cells infected with the LAT(-) mutant dLAT2903 reproducibly had more apoptotic nuclei than identically treated cells infected with the LAT(+) parental virus HSV-1 strain McKrae. Using serum starvation and/or UV treatment and a method to isolate fragmented DNA away from large chromosomal DNA, we found a similar window of time post-infection during which Neuro2A cells infected with dLAT2903 had increased DNA fragmentation (as judged by a DNA laddering assay) compared to identically treated cells infected with wild type McKrae or the LAT(+) marker rescued dLAT2903R virus. These assays should permit the use of culture assays, rather than labor intensive animal models, to examine LAT's anti-apoptosis activity in the context of the virus in a large number of existing LAT mutant viruses.


Subject(s)
Herpesvirus 1, Human/pathogenicity , Viral Proteins/genetics , Viral Proteins/physiology , Animals , Apoptosis , Cell Line , DNA Fragmentation , Gene Deletion , Genes, Viral , Herpesvirus 1, Human/genetics , Mice , MicroRNAs , Rabbits , Schwann Cells/metabolism , Schwann Cells/pathology , Schwann Cells/virology , Virology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...