Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 155: 106577, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759587

ABSTRACT

The present study simulates the fracture behavior of diabetic cortical bone with high levels of advanced glycation end-products (AGEs) under dynamic loading. We consider that the increased AGEs in diabetic cortical bone degrade the materials heterogeneity of cortical bone through a reduction in critical energy release rates of the microstructural features. To simulate the initiation and propagation of cracks, we implement a phase field fracture framework on 2D models of human tibia cortical microstructure. The simulations show that the mismatch between the fracture properties (e.g., critical energy release rate) of osteons and interstitial tissue due to high AGEs contents can change crack growth trajectories. The results show crack branching in the cortical microstructure under dynamic loading is affected by the mismatches related to AGEs. In addition, we observe cortical features such as osteons and cement lines can prevent multiple cracking under dynamic loading even with changing the mismatches due to high AGEs. Furthermore, under dynamic loading, some toughening mechanisms can be activated and deactivated with different AGEs contents. In conclusion, the current findings present that the combination of the loading type and materials heterogeneity of microstructural features can change the fracture response of diabetic cortical bone and its fragility.


Subject(s)
Cortical Bone , Glycation End Products, Advanced , Weight-Bearing , Humans , Cortical Bone/metabolism , Glycation End Products, Advanced/metabolism , Biomechanical Phenomena , Fractures, Bone/metabolism , Tibia/metabolism , Finite Element Analysis , Stress, Mechanical
2.
J Orthop Res ; 42(8): 1780-1790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38483072

ABSTRACT

The shape of the talus, its internal structure, and its mechanical properties are important in determining talar behavior during loading, which may be significant for the design of surgical tools and implants. Although recent studies using statistical shape modeling have described quantitative talar external shape variation, no similar quantitative study exists to describe the density distribution of internal talar structure. The goal of this study is to quantify statistical variation in talar shape and density to benefit the design of talar implants. To this end, weight-bearing computed tomography (CT) scans of the ankle were collected in neutral, bilateral standing posture, and three-dimensional models were generated for each talus. Local density derived from the Hounsfield unit of each CT voxel was extracted. A weighted spherical harmonic analysis was performed to quantify the talar external shape. One hundred and seventy-nine volumes of interest were placed in the same relative position within each talus to quantify the talar density. Additionally, a finite element analysis (FEA) was conducted on a talus with both heterogeneous and homogeneous material properties to observe the effect of these properties on the stress and strain response. Significant differences were found in the talar density in sex and age, as well as in the stress and strain response between homogeneous and heterogeneous FEA. These differences show the importance of considering heterogeneity when examining the load response of tarsal bones.


Subject(s)
Bone Density , Finite Element Analysis , Talus , Humans , Talus/diagnostic imaging , Talus/anatomy & histology , Talus/physiology , Female , Male , Adult , Middle Aged , Tomography, X-Ray Computed , Aged , Young Adult , Weight-Bearing
3.
J Orthop Res ; 42(6): 1223-1230, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38111190

ABSTRACT

Fixation with suture anchors and metallic hardware for osteosynthesis is common in orthopedic surgeries. Most metallic commercial bone anchors achieve their fixation to bone through shear of the bone located between the threads. They have several deficiencies, including stress-shielding due to mechanical properties mismatch, generation of acidic by-products, poor osteointegration, low mechanical strength and catastrophic failure often associated with large bone defects that may be difficult to repair. To overcome these deficiencies, a swelling porous copolymeric material, to be used as bone anchors with osteointegration potential, was introduced. The purpose of this study was to investigate the fixation strength of these porous, swelling copolymeric bone anchors in artificial bone of various densities. The pull-out and subsidence studies indicate an effective fixation mechanism based on friction including re-fixation capabilities, and minimization of damage following complete failure. The study suggests that this swelling porous structure may provide an effective alternative to conventional bone anchors, particularly in low-density bone.


Subject(s)
Suture Anchors , Materials Testing , Porosity , Polymers , Humans
4.
Dent Mater ; 38(11): 1789-1800, 2022 11.
Article in English | MEDLINE | ID: mdl-36184336

ABSTRACT

OBJECTIVES: Dentin microstructure undergoes changes with age and its materials properties degrade over time. In the present study, we investigate the coupled influence of increased filled tubules and decreased materials properties on the fracture behavior of human dentin. METHODS: We assume degraded materials properties are linked with increased advanced glycation end-products (AGEs) crosslinks in dentin tissue. We use morphological data of human molars to create 2D and 3D models of dentin microstructure, and utilize a phase field fracture framework to study crack growth trajectories. We construct aged dentin samples (i.e., filled tubules and degraded properties) and compare the fracture results with the samples without age-related changes. RESULTS: The simulations show an increase in the number of filled tubules can deactivate the toughening mechanisms such as crack deflection and microcracking. In addition, filled tubules have adverse impacts on the ability of peritubular dentin to shield microcracking. We further show how the dentinal tubules' orientations affect the crack surface growth. We also investigate that an increase in the AGEs level can result in increased brittleness. SIGNIFICANCE: The developed model and findings of the present study provide region-dependent information on crack growth trajectories as well as more understanding of crack surface growth at the presence of filled tubules.


Subject(s)
Dentin , Molar , Aged , Dentin/chemistry , Humans
5.
Comput Methods Biomech Biomed Engin ; 25(3): 342-357, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35014938

ABSTRACT

Developing advanced fracture tools can increase the understanding of crack growth trajectories in human cortical bone. The present study investigates fracture micromechanics of human cortical bone under compressive and tensile loadings utilizing a phase field method. We construct two-dimensional finite element models from cortical microstructure of a human tibia cross section. We apply compression on the cortical bone models to create compressive microcracks. Then, we simulate the fracture of these models under tension to discover influential parameters on microcracks formation and post-yielding behavior. The results show that cement lines are susceptible sites to damage nucleation under compression rather than tension. The findings of this study also indicate a higher accumulation of initial damage (induced by compression) can lead to a lower microscopic stiffness as well as a less resistant material to damage initiation under tension. The simulations further indicate that the post-yielding properties (e.g., toughness) can be dependent on different variables such as morphological information of the osteons, the initial accumulation of microcracks, and the total length of cement lines.


Subject(s)
Fractures, Bone , Models, Biological , Bone and Bones , Cortical Bone , Haversian System , Humans , Stress, Mechanical , Tensile Strength
6.
J Mech Behav Biomed Mater ; 126: 105029, 2022 02.
Article in English | MEDLINE | ID: mdl-34971951

ABSTRACT

The mechanical behavior of cortical bone is influenced by microstructural components such as osteons, Haversian canals, and osteocyte lacunae that arise from biological remodeling processes. This study takes a computational approach to investigate the role of the perilacunar zones formed by the local remodeling processes of lacunar-dwelling osteocytes by utilizing phase-field finite element models based on histological imaging of human bone. The models simulated the microdamage accumulation that occurs in cortical bone under transverse compression in bone without lacunae, with lacunae, and with a perilacunar zone surrounding lacunae in order to investigate the role of these features. The results of the simulations found that while lacunae create stress concentration which initiate further damage, perilacunar regions can delay or prevent the emergence and growth of microcracks.


Subject(s)
Cortical Bone , Osteocytes , Bone and Bones , Haversian System , Humans
7.
J Biomech ; 125: 110600, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34246065

ABSTRACT

Diabetes is associated with increased fracture risk in human bone, especially in the elderly population. In the present study, we investigate how simulated advanced glycation end-products (AGEs) and materials heterogeneity affect crack growth trajectory in human cortical bone. We used a phase field fracture framework on 2D models of cortical microstructure created from human tibias to analyze crack propagation. The increased AGEs level results in a higher rate of crack formation. The simulations also indicate that the mismatch between the fracture properties (e.g., critical energy release rate) of osteons and interstitial tissue can alter the post-yielding behavior. The results show that if the critical energy release rate of cement lines is lower than that of osteons and the surrounding interstitial matrix, cracks can be arrested by cement lines. Additionally, activation of toughening mechanisms such as crack merging and branching depends on bone microstructural morphology (i.e., osteons geometrical parameters, canals, and lacunae porosities). In conclusion, the present findings suggest that materials heterogeneity of microstructural features and the crack-microstructure interactions can play important roles in bone fragility.


Subject(s)
Fractures, Bone , Models, Biological , Aged , Bone and Bones , Cortical Bone , Haversian System , Humans
8.
J Mech Behav Biomed Mater ; 114: 104171, 2021 02.
Article in English | MEDLINE | ID: mdl-33218927

ABSTRACT

In the present study, we investigate the effects of microstructural morphology and heterogeneity on the initiation and propagation of microcracks in dentin. We create 2D pre-cracked models of human dentin at the microscale level and use a brittle fracture framework of the phase-field method to analyze the crack growth. We discuss the influence of the microstructural features on crack deflection, microcracking, and uncracked ligament bridging through various regions in dentin. The results demonstrate that the difference between the critical energy release rates of peritubular (PTD) and intertubular dentin (ITD) has considerable impacts on microcracking. Our simulations reveal that tubules surrounded by PTDs play an important role in the crack deflection. Our results also indicate that the toughness of dentin increases from the inner to outer dentin. In conclusion, the findings in our study provide valuable insights into the fracture behavior in various regions of dentin.


Subject(s)
Dentin , Ligaments , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...