Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 302(1): E87-E102, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21952036

ABSTRACT

It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ∼13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ∼10 pmol·min(-1)·islet(-1). Our data suggest that impaired ß-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.


Subject(s)
Benzeneacetamides/pharmacology , Diabetes Mellitus, Type 2/metabolism , Enzyme Activators/pharmacology , Glucokinase/metabolism , Glucose/metabolism , Insulin/metabolism , Islets of Langerhans/drug effects , Adult , Animals , Calcium Signaling/drug effects , Cell Respiration/drug effects , Diabetes Mellitus, Type 2/drug therapy , Exenatide , Female , Glucagon-Like Peptide 1/analogs & derivatives , Glucokinase/chemistry , Glycolysis/drug effects , Humans , Hypoglycemic Agents/pharmacology , Insulin Secretion , Islets of Langerhans/metabolism , Male , Mice , Middle Aged , Oxidative Phosphorylation/drug effects , Peptides/pharmacology , Rats , Species Specificity , Tissue Culture Techniques , Venoms/pharmacology
2.
J Biol Chem ; 283(25): 17238-49, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18445600

ABSTRACT

Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1(-/-) islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-beta-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1(-/-) and glyburide-treated SUR1(+/+) islets. Glucose oxidation and pyruvate cycling was increased in SUR1(-/-) islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1, 2, and 3, involved in pyruvate cycling, were all expressed in islets. High glucose lowered aspartate and stimulated glutamine synthesis similarly in controls and SUR1(-/-) islets. The data suggest that the interruption of the GABA shunt and the lack of glucose regulation of pyruvate cycling may cause the glucose insensitivity of the SUR1(-/-) islets but that enhanced basal pyruvate cycling, lowered GABA shunt flux, and enhanced glutaminolytic capacity may sensitize the beta cells to amino acid stimulation.


Subject(s)
Adenosine Triphosphate/chemistry , Glucose/metabolism , Glutamine/chemistry , Potassium/chemistry , Pyruvates/chemistry , gamma-Aminobutyric Acid/metabolism , Amino Acids/chemistry , Animals , Gas Chromatography-Mass Spectrometry/methods , Genotype , Glutamate Decarboxylase/metabolism , Mice , Mice, Transgenic , Models, Biological , Oxygen/metabolism
3.
J Biol Chem ; 281(22): 15064-72, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16574664

ABSTRACT

Glutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition. The H454Y GDH transgenic mice had hypoglycemia with normal growth rates. H454Y GDH transgenic islets were more sensitive to leucine- and glutamine-stimulated insulin secretion but had decreased response to glucose stimulation. The fluxes via GDH and glutaminase were measured by tracing 15N flux from [2-15N]glutamine. The H454Y transgene in islets had higher insulin secretion in response to glutamine alone and had 2-fold greater GDH flux. High glucose inhibited both glutaminase and GDH flux, and leucine could not override this inhibition. 15NH4Cl tracing studies showed 15N was not incorporated into glutamate in either H454Y transgenic or normal islets. In conclusion, we generated a GDH-HI disease mouse model that has a hypoglycemia phenotype and confirmed that the mutation of H454Y is disease causing. Stimulation of insulin release by the H454Y GDH mutation or by leucine activation is associated with increased oxidative deamination of glutamate via GDH. This study suggests that GDH functions predominantly in the direction of glutamate oxidation rather than glutamate synthesis in mouse islets and that this flux is tightly controlled by glucose.


Subject(s)
Glutamate Dehydrogenase/genetics , Insulin/metabolism , Mutation , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/drug effects , Glucose/pharmacology , Glutamate Dehydrogenase/antagonists & inhibitors , Glutamate Dehydrogenase/metabolism , Glutamine/pharmacology , Guanosine Triphosphate/pharmacology , Humans , Hyperinsulinism/enzymology , Hyperinsulinism/genetics , Hyperinsulinism/physiopathology , In Vitro Techniques , Insulin Secretion , Islets of Langerhans/drug effects , Islets of Langerhans/enzymology , Islets of Langerhans/metabolism , Kinetics , Leucine/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
J Biol Chem ; 281(15): 10214-21, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16476731

ABSTRACT

Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of green tea polyphenols on GDH and insulin secretion. Of the four compounds tested, epigallocatechin gallate (EGCG) and epicatechin gallate were found to inhibit GDH with nanomolar ED(50) values and were therefore found to be as potent as the physiologically important inhibitor GTP. Furthermore, we have demonstrated that EGCG inhibits BCH-stimulated insulin secretion, a process that is mediated by GDH, under conditions where GDH is no longer inhibited by high energy metabolites. EGCG does not affect glucose-stimulated insulin secretion under high energy conditions where GDH is probably fully inhibited. We have further shown that these compounds act in an allosteric manner independent of their antioxidant activity and that the beta-cell stimulatory effects are directly correlated with glutamine oxidation. These results demonstrate that EGCG, much like the activator of GDH (BCH), can facilitate dissecting the complex regulation of insulin secretion by pharmacologically modulating the effects of GDH.


Subject(s)
Enzyme Inhibitors/pharmacology , Flavonoids/chemistry , Glutamate Dehydrogenase/antagonists & inhibitors , Insulin/metabolism , Phenols/chemistry , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Animals , Cattle , Dose-Response Relationship, Drug , Glutamate Dehydrogenase/metabolism , Guanosine Triphosphate/chemistry , Hyperammonemia/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Kinetics , Leucine/chemistry , Male , Models, Biological , Models, Chemical , Models, Molecular , Oxygen Consumption , Perfusion , Polyphenols , Protein Conformation , Rats , Rats, Wistar , Tea , Time Factors
5.
Am J Physiol Endocrinol Metab ; 286(5): E834-43, 2004 May.
Article in English | MEDLINE | ID: mdl-14736703

ABSTRACT

Inhibition of ATP-sensitive K+ (K(ATP)) channels by an increase in the ATP/ADP ratio and the resultant membrane depolarization are considered essential in the process leading to insulin release (IR) from pancreatic beta-cells stimulated by glucose. It is therefore surprising that mice lacking the sulfonylurea type 1 receptor (SUR1-/-) in beta-cells remain euglycemic even though the knockout is expected to cause hypoglycemia. To complicate matters, isolated islets of SUR1-/- mice secrete little insulin in response to high glucose, which extrapolates to hyperglycemia in the intact animal. It remains thus unexplained how euglycemia is maintained. In recognition of the essential role of neural and endocrine regulation of IR, we evaluated the effects of acetylcholine (ACh) and glucagon-like peptide-1 (GLP-1) on IR and free intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated or cultured islets of SUR1-/- mice and B6D2F1 controls (SUR1+/+). IBMX, a phosphodiesterase inhibitor, was also used to explore cAMP-dependent signaling in IR. Most striking, and in contrast to controls, SUR1-/-) islets are hypersensitive to ACh and IBMX, as demonstrated by a marked increase of IR even in the absence of glucose. The hypersensitivity to ACh was reproduced in control islets by depolarization with the SUR1 inhibitor glyburide. Pretreatment of perifused SUR1-/- islets with ACh or IBMX restored glucose stimulation of IR, an effect expectedly insensitive to diazoxide. The calcium channel blocker verapamil reduced but did not abolish ACh-stimulated IR, supporting a role for intracellular Ca2+ stores in stimulus-secretion coupling. The effect of ACh on IR was greatly potentiated by GLP-1 (10 nM). ACh caused a dose-dependent increase in [Ca2+]i at 0.1-1 microM or biphasic changes (an initial sharp increase in [Ca2+]i followed by a sustained phase of low [Ca2+]i) at 1-100 microM. The latter effects were observed in substrate-free medium or in the presence of 16.7 mM glucose. We conclude that SUR1 deletion depolarizes the beta-cells and markedly elevates basal [Ca2+]i. Elevated [Ca2+]i in turn sensitizes the beta-cells to the secretory effects of ACh and IBMX. Priming by the combination of high [Ca2+]i, ACh, and GLP-1 restores the defective glucose responsiveness, precluding the development of diabetes but not effectively enough to cause hyperinsulinemic hypoglycemia.


Subject(s)
ATP-Binding Cassette Transporters , Acetylcholine/physiology , Blood Glucose/metabolism , Insulin/physiology , Islets of Langerhans/metabolism , Multidrug Resistance-Associated Proteins/physiology , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Calcium/metabolism , Glucagon/physiology , Glucagon-Like Peptide 1 , In Vitro Techniques , Insulin/metabolism , Insulin Secretion , Intracellular Fluid/metabolism , Islets of Langerhans/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred Strains , Mice, Knockout , Multidrug Resistance-Associated Proteins/deficiency , Peptide Fragments/physiology , Phosphodiesterase Inhibitors/pharmacology , Potassium Channels, Inwardly Rectifying , Protein Precursors/physiology , Receptors, Drug , Second Messenger Systems/physiology , Signal Transduction/physiology , Sulfonylurea Receptors
6.
Endocrinology ; 144(5): 1949-57, 2003 May.
Article in English | MEDLINE | ID: mdl-12697702

ABSTRACT

Culturing rat islets in high glucose (HG) increased 1-(14)C-alpha-ketoisocaproate (KIC) oxidation compared with culturing them in low glucose. Leucine caused insulin secretion (IS) in low glucose but not in HG rat islets, whereas KIC did so in both. Pretreatment with HG for 40 min abolished leucine stimulation of IS by mouse islets and prevented the cytosolic Ca(2+) rise without inhibiting IS and Ca(2+) increments caused by KIC. When islets were pretreated without glucose and glutamine, aminooxyacetic acid (AOA) markedly decreased KIC effects. When islets were pretreated without glucose and with glutamine, AOA potentiated leucine effects but attenuated KIC effects. AOA stimulated glutamine oxidation in the presence but not the absence of +/-2-amino-2-norbornane-carboxylic acid, a nonmetabolized leucine analog. Pretreatment with HG and glutamine partially reversed AOA inhibition of KIC effects. Glucose increased intracellular ATP and GTP, whereas it decreased ADP and GDP in beta HC9 cells. Glutamate dehydrogenase activity of beta HC9 cell extracts was increased by leucine and attenuated by GTP, but it was potentiated by ADP. In conclusion, leucine and KIC stimulated beta-cells via distinct mechanisms. Glutamate dehydrogenase is the sensor of leucine, whereas transamination plays an important role in KIC stimulation of pancreatic beta-cells.


Subject(s)
Chemoreceptor Cells/physiology , Islets of Langerhans/innervation , Keto Acids/metabolism , Leucine/metabolism , Aminooxyacetic Acid/pharmacology , Animals , Calcium/metabolism , Cell Extracts/chemistry , Cell Line , Culture Techniques , Cytosol/metabolism , Dose-Response Relationship, Drug , Glucose/administration & dosage , Glutamate Dehydrogenase/analysis , Glutamine/metabolism , Insulin/metabolism , Insulin Secretion , Intracellular Membranes/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Mice , Mice, Inbred Strains , Nucleotides/pharmacology , Nucleotides/physiology , Osmolar Concentration , Oxidation-Reduction , Rats , Rats, Wistar
7.
J Biol Chem ; 278(5): 2853-8, 2003 Jan 31.
Article in English | MEDLINE | ID: mdl-12444083

ABSTRACT

Glutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of beta-cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose depletion and by tracing the nitrogen flux of [2-(15)N]glutamine using stable isotope techniques. The sensitivity of leucine stimulation was enhanced by long time (120-min) energy depletion and inhibited by glucose pretreatment. After limited 50-min glucose depletion, leucine, not alpha-ketoisocaproate, failed to stimulate insulin release. beta-Cells sensitivity to leucine is therefore proposed to be a function of GDH activation. Leucine increased the flux through GDH 3-fold compared with controls while causing insulin release. High glucose inhibited flux through both glutaminase and GDH, and leucine was unable to override this inhibition. These results clearly show that leucine induced the secretion of insulin by augmenting glutaminolysis through activating glutaminase and GDH. Glucose regulates beta-cell sensitivity to leucine by elevating the ratio of ATP and GTP to ADP and P(i) and thereby decreasing the flux through GDH and glutaminase. These mechanisms provide an explanation for hypoglycemia caused by mutations of GDH in children.


Subject(s)
Glutamine/pharmacology , Insulin/metabolism , Islets of Langerhans/metabolism , Leucine/pharmacology , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Glutamate Dehydrogenase/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Kinetics , Male , Models, Biological , Perfusion , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...