Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 651, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734860

ABSTRACT

BACKGROUND: Canine atopic dermatitis (CAD) is a common genetically predisposed, inflammatory, and pruritic skin disorder that affects dogs globally. To date, there are no specific biomarkers available to diagnose CAD, and the current diagnosis is based on a combination of criteria including patient history, clinical signs, and exclusion of other relevant differential diagnoses. METHODS AND RESULTS: We examined the gene expression of phosphodiesterase 4D (PDE4D) in peripheral blood mononuclear cells (PBMCs), as well as miR-203 and miR-483 in plasma, in three groups: healthy dogs, CAD dogs, and other inflammatory pruritic skin diseases (OIPSD) such as pemphigus foliaceus, scabies, cutaneous lymphoma, and dermatophytosis. Our results showed that PDE4D gene expression in the CAD group is statistically higher compared to those in the healthy and OIPSD groups, suggesting PDE4D may be a specific marker for CAD. Nevertheless, no correlation was found between PDE4D gene expression levels and the lesion severity gauged by CAD severity index-4 (CADESI-4). We also showed that miR-203 is a generic marker for clinical dermatitis and differentiates both CAD and OIPSD inflammatory conditions from healthy controls. CONCLUSIONS: We show that PDE4D is a potential marker to differentiate CAD from non-atopic healthy and OIPSD while miR-203 may be a potential marker for general dermatologic inflammation. Future study of PDE4D and miR-203 on a larger scale is warranted.


Subject(s)
Biomarkers , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dermatitis, Atopic , Dog Diseases , MicroRNAs , Dermatitis, Atopic/genetics , Dermatitis, Atopic/veterinary , Dermatitis, Atopic/blood , Dermatitis, Atopic/diagnosis , Animals , Dogs , MicroRNAs/genetics , MicroRNAs/blood , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Biomarkers/blood , Dog Diseases/genetics , Dog Diseases/diagnosis , Dog Diseases/blood , Male , Leukocytes, Mononuclear/metabolism , Female
2.
Vet Res Commun ; 48(2): 865-875, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37968413

ABSTRACT

The protozoan parasite Tritrichomonas foetus (T. foetus) is the causative organism of bovine trichomonosis (also referred to as trichomoniasis), a sexually-transmitted infection that reduces fertility in cattle. Efforts to control trichomonosis on cattle farms are hindered by the discouragement of antibiotic use in agriculture, and the incomplete, short-lived protection conferred by the current vaccines. A more complete mechanistic understanding of what effective immunity to T. foetus entails could enable the development of more robust infection control strategies. While neutrophils, the primary responders to infection, are present in infected tissues and have been shown to kill the parasite in vitro, the mechanism they use for parasite killing has not been established. Here, we show that primary bovine neutrophils isolated from peripheral blood rapidly kill T. foetus in vitro in a dose-dependent manner, and that optimal parasite killing is reduced by inhibitors of trogocytosis. We also use imaging to show that bovine neutrophils surround T. foetus and trogocytose its membrane. These findings are consistent with killing via trogocytosis, a recently described novel neutrophil antimicrobial mechanism.


Subject(s)
Cattle Diseases , Parasites , Protozoan Infections, Animal , Tritrichomonas foetus , Cattle , Animals , Neutrophils , Trogocytosis , Cattle Diseases/parasitology , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/prevention & control
3.
J Cell Biochem ; 124(2): 181-187, 2023 02.
Article in English | MEDLINE | ID: mdl-36576973

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent cells found in a variety of tissues in the body, including but not limited to bone marrow, adipose tissue, umbilical cord, and umbilical cord blood. Given their immunomodulatory effect and ability to be readily isolated from several tissues, they have great potential to be used as a therapeutic agent in a variety of immune-mediated disorders. Atopic dermatitis (AD) is a persistent and relapsing immune skin condition that has recently become more common in several species such as humans, canines, equines, and felines. The use of MSCs to treat AD has piqued the great interest of researchers in recent years. In this article, we review the recent understanding of AD pathology and advances in preclinical and clinical studies of MSCs, MSCs-derived conditional media and exosomes as therapeutic tools to treat AD.


Subject(s)
Dermatitis, Atopic , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Animals , Dogs , Cats , Horses , Dermatitis, Atopic/pathology , Dermatitis, Atopic/therapy , Mesenchymal Stem Cells/pathology , Umbilical Cord , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...