Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Retrovirology ; 12: 30, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25889234

ABSTRACT

BACKGROUND: Current therapies have succeeded in controlling AIDS pandemic. However, there is a continuing need for new drugs, in particular those acting through new and as yet unexplored mechanisms of action to achieve HIV infection cure. We took advantage of the unique feature of proviral genome to require both activation and inhibition of splicing of viral transcripts to develop molecules capable of achieving long lasting effect on viral replication in humanized mouse models through inhibition of Rev-mediated viral RNA biogenesis. RESULTS: Current HIV therapies reduce viral load during treatment but titers rebound after treatment is discontinued. We devised a new drug that has a long lasting effect after viral load reduction. We demonstrate here that ABX464 compromises HIV replication of clinical isolates of different subtypes without selecting for drug resistance in PBMCs or macrophages. ABX464 alone, also efficiently compromised viral proliferation in two humanized mouse models infected with HIV that require a combination of 3TC, Raltegravir and Tenofovir (HAART) to achieve viral inhibition in current protocols. Crucially, while viral load increased dramatically just one week after stopping HAART treatment, only slight rebound was observed following treatment cessation with ABX464 and the magnitude of the rebound was maintained below to that of HAART for two months after stopping the treatment. Using a system to visualize single HIV RNA molecules in living cells, we show that ABX464 inhibits viral replication by preventing Rev-mediated export of unspliced HIV-1 transcripts to the cytoplasm and by interacting with the Cap Binding Complex (CBC). Deep sequencing of viral RNA from treated cells established that retained viral RNA is massively spliced but importantly, normal cellular splicing is unaffected by the drug. Consistently ABX464 is non-toxic in humans and therefore represents a promising complement to current HIV therapies. CONCLUSIONS: ABX464 represents a novel class of anti-HIV molecules with unique properties. ABX464 has a long lasting effect in humanized mice and neutralizes the expression of HIV-1 proviral genome of infected immune cells including reservoirs and it is therefore a promising drug toward a functional cure of HIV.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/isolation & purification , Viral Load , Adult , Animals , Anti-HIV Agents/pharmacology , Disease Models, Animal , HIV-1/drug effects , Humans , Mice, SCID , Virus Replication/drug effects
2.
Chem Commun (Camb) ; (47): 5031-3, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18049743

ABSTRACT

Palladium nanoparticles were entrapped within resin plugs and used in a range of ligand-free cross-coupling reactions; the convenient modular format of the resin plug enhanced resin handling and allowed the catalysts to be easily recovered and multiply reused.

3.
J Am Chem Soc ; 128(19): 6276-7, 2006 May 17.
Article in English | MEDLINE | ID: mdl-16683766

ABSTRACT

Polystyrene-poly(ethylene glycol) resin-captured cross-linked palladium nanopaticles were prepared via a straightforward route, and their heterogeneous behavior was truly confirmed by various tests. They were applied to aqueous Suzuki cross-coupling reactions with various aryl bromides and recycled up to six times without loss of activity.


Subject(s)
Nanoparticles/chemistry , Palladium/chemistry , Catalysis , Conservation of Natural Resources , Cross-Linking Reagents , Polyethylene Glycols , Polystyrenes , Resins, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...