Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(48): 54141-54156, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36416730

ABSTRACT

High loading capacity and smart release of inhibitors are the first and foremost characteristics of nanocontainers, which play a pivotal role in metal active corrosion protection. The present work explores the development of novel protective nanocontainers based on recently emerged covalent organic frameworks (COFs). These highly porous frameworks with large surface area, outstanding thermomechanical properties, low density, and ease of functionalization are used as nanocontainers. On the other hand, molybdenum disulfide (MoS2), a state-of-the-art 2D layered compound with a sheetlike structure, was utilized thanks to its excellent barrier properties. However, these lamellar structures suffer a high agglomeration tendency in polymeric matrices. Therefore, we developed a novel hybrid nanocontainer, inspired by natural nacre, by an in situ growth of COF on MoS2 to improve the stability and provide a high inhibitor loading capacity. The porous and nitrogen-rich structure of COF made it a good carrier to adsorb europium cations as inorganic inhibitors and release them on demand by pH changes to suppress the electrochemical reactions. The as-synthesized nanoplatforms were used as pH-responsive fillers in the epoxy resin. The nanocomposite coatings showed almost 50 kΩ cm2 total resistance and high impedance values (1011 Ω cm2) even after 77 days of immersion. Moreover, salt spray analysis depicted the smallest amount of rust and corrosion product after 31 days in the filled nanocomposite coating. Cathodic delamination and pull-off outcomes denoted that the filled coatings with the as-synthesized nanofiller showed the smallest cathodic delamination radius (3.41 mm) and lowest adhesion loss (24%) compared to the neat epoxy (7.55 mm and 46.7%). As such, the highly porous modified MoS2 nanosheets are considered promising alternatives in a wide range of applications with anticorrosion properties.

2.
ACS Appl Mater Interfaces ; 14(17): 19958-19974, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35191688

ABSTRACT

Covalent organic frameworks (COFs) have been proposed as a wholly organic architecture sharing high crystallinity, porosity, and tuneability. Moreover, they exhibit highly stable structures against harsh chemical environments, including boiling water, strong acids and bases, and oxidation and reduction conditions, making them good candidates for extreme conditions. For the first time, a porous COF structure based on terephthalaldehyde and melamine was synthesized and employed as a novel nanocontainer for hosting corrosion inhibitors to provide a coating with superior active/passive anti-corrosion properties. In this study, the multi-walled carbon nanotube was utilized as a platform for growing COF (CC) to improve the coating's barrier and thermo-mechanical properties. The zinc cations were loaded into the CC structure (called CCZ) as one of the most promising inhibitors for mild steel. The COF-based nanoparticles' characterization was done by Fourier transform infrared, Raman, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller, field emission scanning electron microscopy, and transmission electron microscopy (TEM) techniques. Moreover, the Density functional theory modeling and molecular dynamics simulation quantitatively highlighted the adsorption propensity of the investigated COF structures onto the oxidized CNT-based nanostructures and the interactions of epoxy with these nanostructures. The CCZ nanoparticles (NPs) showed 75% inhibition efficiency in saline solution and 418 ppm zinc ions release after 24 h at acidic pH. The CCZ/EP coating revealed the smart release of inhibitor for 24 h and represented excellent barrier properties after 9 weeks of immersion in saline solution. In terms of mechanical properties, the elastic modulus values derived from the dynamic mechanical thermal analyzer were enhanced by 107 and 137% in CC/EP and CCZ/EP samples compared to the neat epoxy. Furthermore, the yield stress and breakpoint elongation were strengthened by 102 and 63% for the CC/EP sample, respectively. Finally, the highest pull-off adhesion strength in dry (8.53 MPa) and wet (2.7 MPa) conditions, along with the lowest adhesion loss (68.3%), was related to the CCZ/EP sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...