Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20209692

ABSTRACT

Tracing the globally circulating SARS-CoV-2 mutants is essential for the outbreak alerts and far-reaching epidemiological surveillance. The available technique to identify the phylogenetic clades through high-throughput sequencing is costly, time-consuming, and labor-intensive that hinders the viral genotyping in low-income countries. Here, we propose a rapid, simple and cost-effective amplification-refractory mutation system (ARMS)-based multiplex reverse-transcriptase PCR assay to identify six distinct phylogenetic clades: S, L, V, G, GH, and GR. This approach is applied on 24 COVID-19 positive samples as confirmed by CDC approved real-time PCR assay for SARS-CoV-2. Our multiplex PCR is designed in a mutually exclusive way to identify V-S and G-GH-GR clade variants separately. The pentaplex assay included all five variants and the quadruplex comprised of the triplex variants alongside either V or S clade mutations that created two separate subsets. The procedure was optimized in the primer concentration (0.2-0.6 {micro}M) and annealing temperature (56-60{degrees}C) of PCR using 3-5 ng/{micro}l cDNA template synthesized upon random- and oligo(dT)-primer based reverse transcription. The different primer concentration for the triplex and quadruplex adjusted to different strengths ensured an even amplification with a maximum resolution of all targeted amplicons. The targeted Sanger sequencing further confirmed the presence of the clade-featured mutations with another set of our designed primers. This multiplex ARMS-PCR assay is sample, cost-effective, and convenient that can successfully discriminate the circulating phylogenetic clades of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...