Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 7(1): 165-73, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23194077

ABSTRACT

We report in situ Raman scattering experiments on single-layer graphene (SLG) and Bernal bilayer graphene (BLG) during exposure to rubidium vapor. The G- and 2D-band evolutions with doping time are presented and analyzed. On SLG, the extended doping range scanned (up to about 10(14) electrons/cm(2)) allows the observation of three regimes in the evolution of the G-band frequency: a continuous upshift followed by a plateau and a downshift. Overall the measured evolution is interpreted as the signature of the competition between dynamic and adiabatic effects upon n-doping. Comparison of the obtained results with theoretical predictions indicates however that a substrate pinning effect occurs and inhibits charge-induced lattice expansion of SLG. At low doping, a direct link between electrostatic gating and Rb doping results is presented. For BLG, the added electrons are shown to be first confined in the top layer, but the system evolves with time toward a more symmetric repartition of the added electrons in both layers. The results obtained on BLG also confirm that the slope of the phonon dispersion close to the K point tends to be slightly reduced at low doping but suggest the occurrence of an unexpected increase of the phonon dispersion slope at higher electron concentration.


Subject(s)
Graphite/chemistry , Materials Testing/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Rubidium/chemistry , Gases/chemistry , Particle Size , Spectrum Analysis, Raman , Surface Properties
2.
Nano Lett ; 10(12): 5043-8, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21050011

ABSTRACT

We study single wall carbon nanotubes (SWNTs) deposited on quartz. Their Raman spectrum depends on the tube-substrate morphology, and in some cases, it shows that the same SWNT-on-quartz system exhibits a mixture of semiconductor and metal behavior, depending on the orientation between the tube and the substrate. We also address the problem using electric force microscopy and ab initio calculations, both showing that the electronic properties along a single SWNT are being modulated via tube-substrate interaction.

3.
Microsc Microanal ; 12(4): 311-6, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16842643

ABSTRACT

Here, we describe the development of an inexpensive and versatile manipulation system for in situ experiments in a field emission scanning electron microscope based on a parallel-guiding plate-spring mechanism and low cost materials. The system has been tested for a wide range of applications, such as collecting, moving, and positioning particles, fabricating atomic force microscopy tips based on carbon nanotubes, and characterizing individual nanobjects. The nanomanipulation results demonstrate that there are many opportunities for the use of physical manipulation in the bottom-up approach to fabrication of nanodevices.

SELECTION OF CITATIONS
SEARCH DETAIL
...