Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35406233

ABSTRACT

Stimuli-responsive polymeric nanoparticles (NPs) exhibit reversible changes in the dispersion or aggregation state in response to external stimuli. In this context, we designed and synthesized core-shell NPs with threonine-containing weak polyelectrolyte shells and fluorescent cross-linked cores, which are applicable for the detection of pH changes and amine compounds in aqueous solution. Stable and uniform NP(dTh) and NP(Fl), consisting of fluorescent symmetric diphenyl dithiophene (dTh) and diphenyl fluorene (Fl) cross-linked cores, were prepared by site-selective Suzuki coupling reactions in self-assembled block copolymer. NP(Fl) with the Fl unit in the core showed a high fluorescence intensity in different solvents, which is regarded as an aggregation-induced emission-type NP showing strong emission in aggregated states in the cross-linked core. Unimodal NPs were observed in water at different pH values, and the diameter of NP(Fl) changed from 122 (pH = 2) to 220 nm (pH = 11). Furthermore, pH-dependent changes of the fluorescence peak positions and intensities were detected, which may be due to the core aggregation derived from the deprotonation of the threonine-based shell fragment. Specific interactions between the threonine-based shell of NP(Fl) and amine compounds (triethylamine and p-phenylenediamine) resulted in fluorescence quenching, suggesting the feasibility of fluorescent amine detection.

2.
RSC Adv ; 10(32): 19034-19040, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518285

ABSTRACT

Donor-acceptor π-conjugated random copolymers based on regioregular poly(3-hexylthiophene), rr-P3HT, with unsymmetrical monothienoisoindigo moieties were obtained by direct arylation polycondensation of 2-bromo-3-hexylthiophene with unsymmetrical monothienoisoindigo motifs under the optimized conditions [palladium-immobilized on thiol-modified silica gel with chloride counter anions, PITS-Cl (2.5 mol%), PivOH (1.0 equiv.), K2CO3 (3.0 equiv.), DMAc, 100 °C, 24 h]. Incorporation of unsymmetrical monothienoisoindigo electron-acceptor units into the polymers tuned their highest occupied and lowest unoccupied molecular orbital levels, which were close to those of the hole transport material (PEDOT) and electron transport material (PCBM), respectively, in thin-film organic solar cells. Alkyl chains of the unsymmetrical monothienoisoindigo units in the polymers tuned their macrostructural order, resulting in the observation of crystalline patterns and specific absorption peaks in thin films. An organic solar cell containing the most crystalline random copolymer showed an efficiency of 1.91%.

3.
Macromol Rapid Commun ; 40(12): e1900115, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31021501

ABSTRACT

Donor-acceptor crosslinked poly[poly(ethylene glycol) methyl ether-methacrylate]-block-poly[1,1'-bis(2-ethylpentyl)-6-methyl-6'-(5-methyl-3-vinylthiophen-2-yl)-[3,3'-biindoline]-2,2'-dione] (poly(PEGMA)m -b-poly(VTIID)n ) nanoparticles with various vinylthiophene donor/isoindigo acceptor ratios are synthesized successfully. The prepared nanoparticles have uniform sizes and well-defined core-shell nanostructures. The intramolecular charge transfer is effectively enhanced due to the incorporation of acceptor groups after the crosslinking reaction. A transistor memory device is assembled using the synthesized polymer and has nonvolatile flash-type memory and amphiphilic trapping behavior. The optimized devices exhibit a significant memory window of approximately 38 V, a retention ability of over 104 s, and an endurance of at least 100 cycles. This study examines multiple applications of crosslinked core-shell nanoparticles, which demonstrates their promise as charge-storage dielectric materials for use in organic memory devices.


Subject(s)
Cross-Linking Reagents/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Transistors, Electronic , Cross-Linking Reagents/chemical synthesis , Molecular Structure , Particle Size , Polymers/chemical synthesis , Surface Properties
4.
Langmuir ; 35(13): 4646-4659, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30845801

ABSTRACT

A series of anionic, zwitterionic, and cationic lysine-based block copolymers with a thermoresponsive segment were synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization of N-acryloyl- N-carbobenzoxy-l-lysine [A-Lys(Cbz)-OH], which contains a carboxylic acid and a protected amine-functionality in the monomer unit. Carboxylic acid-containing homopolymers, poly(A-Lys(Cbz)-OH), with predetermined molecular weights with relatively low polydispersities were initially synthesized by RAFT polymerization of A-Lys(Cbz)-OH. The chain extension of the dithiocarbamate-terminated poly(A-Lys(Cbz)-OH) to N-isopropylacrylamide (NIPAM) via the RAFT process and subsequent deprotection afforded the zwitterionic block copolymer composed of thermoresponsive poly(NIPAM) and poly(A-Lys-OH), which exhibited switchability among the zwitterionic, anionic, and cationic states by pH change. The assembled structures and thermoresponsive and chiroptical properties of these block copolymers were evaluated by dynamic light scattering, circular dichroism, and turbidity measurements. Finally, the cationic block copolymer, poly(A-Lys-OMe)- b-poly(NIPAM), was obtained by the methylation of the carboxylic acid group in the zwitterionic poly(A-Lys-OH) segment. Selective interactions of DNA with the cationic poly(A-Lys-OMe) segment in the lysine-based block copolymer were further evaluated by agarose gel electrophoresis and atomic force microscopy measurements, which revealed characteristic assembled structures and temperature-responsive properties of the polyplexes.


Subject(s)
Cations/chemistry , Polymers/chemistry , Acrylamides/chemistry , Carboxylic Acids/chemistry , Microscopy, Atomic Force
5.
Polymers (Basel) ; 10(7)2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30960646

ABSTRACT

Synthesis of novel block and random copolymers, containing a carbazole unit and (di)phenylanthracene moiety in the side chains, has been described in this paper. Block and random copolymers composed of 4-bromophenyl vinyl sulfide (BPVS) and N-vinylcarbazole (NVC) were initially prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Then, anthracene-based groups were introduced on the bromophenyl unit in the carbazole-containing copolymers by Pd-catalyzed coupling to yield functional copolymers with additional (di)phenylanthracene units. The resulting copolymers, having two distinct electronic functionalities, exhibited characteristic fluorescence resonance energy transfer, as confirmed by UV-vis and fluorescence spectra.

6.
Polymers (Basel) ; 9(11)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-30965921

ABSTRACT

Ionic liquid-based block copolymers composed of ionic (solubility tunable)⁻nonionic (water-soluble and thermoresponsive) segments were synthesized to explore the relationship between ionic conductivity and assembled structures. Three block copolymers, comprising poly(N-vinylimidazolium bromide) (poly(NVI-Br)) as a hydrophilic poly(ionic liquid) segment and thermoresponsive poly(N-isopropylacrylamide) (poly(NIPAM)), having different compositions, were initially prepared by RAFT polymerization. The anion-exchange reaction of the poly(NVI-Br) in the block copolymers with lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) proceeded selectively to afford amphiphilic block copolymers composed of hydrophobic poly(NVI-NTf2) and hydrophilic poly(NIPAM). Resulting poly(NVI-NTf2)-b-poly(NIPAM) exhibited ionic conductivities greater than 10-3 S/cm at 90 °C and 10-4 S/cm at 25 °C, which can be tuned by the comonomer composition and addition of a molten salt. Temperature-dependent ionic conductivity and assembled structures of these block copolymers were investigated, in terms of the comonomer composition, nature of counter anion and sample preparation procedure.

7.
Chem Commun (Camb) ; 52(45): 7269-72, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27180874

ABSTRACT

Solution processable cross-linked core-shell poly[poly(ethylene glycol)methylether methacrylate]-block-poly(2,5-dibromo-3-vinylthiophene) (poly(PEGMA)m-b-poly(DB3VT)n) nanoparticles are firstly explored as charge storage materials for transistor-type memory devices owing to their efficient and controllable ability in electric charge transfer and trapping.

8.
Materials (Basel) ; 7(4): 3274-3290, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-28788617

ABSTRACT

Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs) because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer) solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A) block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...