Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(41): 6211-6214, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37129063

ABSTRACT

Iron(II/III)porphyrin/cyclodextrin inclusion complexes serve as hemoprotein models in vivo. Here we showed the iron(III)porphyrin complex to be spontaneously reduced to its iron(II) state in mouse circulation. The reduced complex bound endogenous CO from carboxyhemoglobin, which was followed by urinary excretion. The natural reduction system was found to be effective for synthetic heme-model compounds.


Subject(s)
Cyclodextrins , Hemeproteins , Porphyrins , Animals , Mice , Iron/metabolism , Heme
2.
Chembiochem ; 22(22): 3190-3198, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34467611

ABSTRACT

Artificial supramolecular systems capable of self-assembly and that precisely function in biological media are in high demand. Herein, we demonstrate a highly specific host-guest-pair system that functions in living cells. A per-O-methyl-ß-cyclodextrin derivative (R8-B-CDMe ) bearing both an octaarginine peptide chain and a BODIPY dye was synthesized as a fluorescent intracellular delivery tool. R8-B-CDMe was efficiently taken up by HeLa cells through both endocytosis and direct transmembrane pathways. R8-B-CDMe formed a 2 : 1 inclusion complex with tetrakis(4-sulfonatophenyl)porphyrin (TPPS) as a guest molecule in water, from which fluorescence resonance energy transfer (FRET) from R8-B-CDMe to TPPS was observed. The FRET phenomenon was clearly detected in living cells using confocal microscopy techniques, which revealed that the formed supramolecular R8-B-CDMe /TPPS complex was maintained within the cells. The R8-B-CDMe cytotoxicity assay revealed that the addition of TPPS counteracts the strong cytotoxicity (IC50 =16 µM) of the CD cavity due to complexation within the cells. A series of experiments demonstrated the bio-orthogonality of the supramolecular per-O-methyl-ß-CD/tetraarylporphyrin host-guest pair in living cells.


Subject(s)
Boron Compounds/chemistry , Fluorescence Resonance Energy Transfer , Mesoporphyrins/chemistry , Peptides/chemistry , beta-Cyclodextrins/chemistry , HeLa Cells , Humans , Macromolecular Substances/chemistry , Molecular Structure , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...