Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
RSC Chem Biol ; 3(12): 1422-1431, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36544577

ABSTRACT

Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation. The chemically synthesized EPFs exhibit bioactivity on stomatal development in Arabidopsis thaliana. Comprehensive synthesis of EPF derivatives allowed us to identify suitable fluorescent variants for bioimaging of the subcellar localization of EPFs.

2.
Plant Biotechnol (Tokyo) ; 36(4): 213-222, 2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31983875

ABSTRACT

DNA methylation in higher organisms has become an expanding field of study as it often involves the regulation of gene expression. Although Whole Genome Bisulfite Sequencing (WG-BS) based on next-generation sequencing (NGS) is the most versatile method, this is a costly technique that lacks in-depth analytic power. There are no conventional methods based on NGS that enable researchers to easily compare the level of DNA methylation from the practical number of samples handled in the laboratory. Although the targeted BS method based on Sanger sequencing is generally used in this case, it lacks in-depth analytic power. Therefore, we propose a new method that combines the high throughput analytic power of NGS and bioinformatics with the specificity and focus offered by PCR-amplification-based bisulfite sequencing methods. We use in silico size sieving of DNA-fragments and primer matchings instead of whole-fragment alignment in our bioinformatics analyses, and named our method SIMON (Simple Inference for Methylome based On NGS). The results of our targeted BS method based on NGS (SIMON method) show that small variations in DNA methylation patterns can be precisely and efficiently measured at a single nucleotide resolution. SIMON method combines pre-existing techniques to provide a cost-effective technique for in-depth studies that focus on pre-identified loci. It offers significant improvements with regard to workflow and the quality of the acquired DNA methylation information. Because of the high accuracy of the analysis, small variations of DNA methylation levels can be precisely determined even with large numbers of samples and loci.

3.
Plant Biotechnol (Tokyo) ; 35(1): 39-49, 2018.
Article in English | MEDLINE | ID: mdl-31275036

ABSTRACT

Balanced development of adaxial and abaxial domains in leaf primordia is critical for the formation of flat symmetric leaf lamina. Arabidopsis ASYMMETRIC LEAVES1 (AS1) and AS2 proteins form a complex (AS1-AS2), which acts as key regulators for the adaxial development by the direct repression of expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). Many modifier mutations have been identified, which enhance the defect of as1 and as2 mutations to generate abaxialized filamentous leaves without adaxial traits, suggesting that the development of the adaxial domain is achieved by cooperative repression by AS1-AS2 and the wild-type proteins corresponding to the modifiers. Mutations of several genes for DNA replication-related chromatin remodeling factors such as Chromatin Assembly Factor-1 (CAF-1) have been also identified as modifiers. It is still unknown, however, whether mutations in genes involved in DNA replication themselves might act as modifiers. Here we report that as1 and as2 mutants grown in the presence of hydroxyurea, a known inhibitor of DNA replication, form abaxialized filamentous leaves in a concentration-dependent manner. We further show that a mutation of the INCURVATA2 (ICU2) gene, which encodes the putative catalytic subunit of DNA polymerase α, and a mutation of the Replication Factor C Subunit3 (RFC3) gene, which encodes a protein used in replication as a clamp loader, act as modifiers. In addition, as2-1 icu2-1 double mutants showed increased mRNA levels of the genes for leaf abaxialization. These results suggest a tight link between DNA replication and the function of AS1-AS2 in the development of flat leaves.

4.
Biol Open ; 5(7): 942-54, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27334696

ABSTRACT

Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

5.
Wiley Interdiscip Rev Dev Biol ; 4(6): 655-71, 2015.
Article in English | MEDLINE | ID: mdl-26108442

ABSTRACT

Leaf primordia are born around meristem-containing stem cells at shoot apices, grow along three axes (proximal-distal, adaxial-abaxial, medial-lateral), and develop into flat symmetric leaves with adaxial-abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor-like proteins and small RNAs. Here, we summarize present understandings of adaxial-specific genes, ASYMMETRIC LEAVES1 (AS1) and AS2. Their complex (AS1-AS2) functions in the regulation of the proximal-distal leaf length by directly repressing class 1 KNOX homeobox genes (BP, KNAT2) that are expressed in the meristem periphery below leaf primordia. Adaxial-abaxial polarity specification involves antagonistic interaction of adaxial and abaxial genes including AS1 and AS2 for the development of two respective domains. AS1-AS2 directly represses the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and indirectly represses ETT/ARF3 and ARF4 through tasiR-ARF. Modifier mutations have been identified that abolish adaxialization and enhance the defect in the proximal-distal patterning in as1 and as2. AS1-AS2 and its modifiers synergistically repress both ARFs and class 1 KNOXs. Repression of ARFs is critical for establishing adaxial-abaxial polarity. On the other hand, abaxial factors KANADI1 (KAN1) and KAN2 directly repress AS2 expression. These data delineate a molecular framework for antagonistic gene interactions among adaxial factors, AS1, AS2, and their modifiers, and the abaxial factors ARFs as key regulators in the establishment of adaxial-abaxial polarity. Possible AS1-AS2 epigenetic repression and activities downstream of ARFs are discussed.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Body Patterning/genetics , Plant Leaves/embryology , Plant Leaves/genetics , Gene Expression Regulation, Plant/genetics , Mutation/genetics , Transcription Factors/genetics
6.
Development ; 140(9): 1958-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23571218

ABSTRACT

Leaf primordia are generated at the periphery of the shoot apex, developing into flat symmetric organs with adaxial-abaxial polarity, in which the indeterminate state is repressed. Despite the crucial role of the ASYMMETRIC LEAVES1 (AS1)-AS2 nuclear-protein complex in leaf adaxial-abaxial polarity specification, information on mechanisms controlling their downstream genes has remained elusive. We systematically analyzed transcripts by microarray and chromatin immunoprecipitation assays and performed genetic rescue of as1 and as2 phenotypic abnormalities, which identified a new target gene, ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3), which encodes an abaxial factor acting downstream of the AS1-AS2 complex. While the AS1-AS2 complex represses ETT by direct binding of AS1 to the ETT promoter, it also indirectly activates miR390- and RDR6-dependent post-transcriptional gene silencing to negatively regulate both ETT and ARF4 activities. Furthermore, AS1-AS2 maintains the status of DNA methylation in the ETT coding region. In agreement, filamentous leaves formed in as1 and as2 plants treated with a DNA methylation inhibitor were rescued by loss of ETT and ARF4 activities. We suggest that negative transcriptional, post-transcriptional and epigenetic regulation of the ARFs by AS1-AS2 is important for stabilizing early leaf partitioning into abaxial and adaxial domains.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Plant Leaves/physiology , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Blotting, Northern , Cell Proliferation , Chromatin Immunoprecipitation , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA, Plant/genetics , DNA, Plant/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant , Nuclear Proteins/genetics , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription, Genetic
7.
Plant Mol Biol ; 79(6): 569-81, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22684430

ABSTRACT

Leaves develop as flat lateral organs from the indeterminate shoot apical meristem. The establishment of polarity along three-dimensional axes, proximal-distal, medial-lateral, and adaxial-abaxial axes, is crucial for the growth of normal leaves. The mutations of ASYMMETRIC LEAVES1 (AS1) and AS2 of Arabidopsis thaliana cause defects in repression of the indeterminate state and the establishment of axis formation in leaves. Although many mutations have been identified that enhance the adaxial-abaxial polarity defects of as1 and as2 mutants, the roles of the causative genes in leaf development are still unknown. In this study, we found that wild-type plants treated with berberine produced pointed leaves, which are often observed in the single mutants that enhance phenotypes of as1 and as2 mutants. The berberine-treated as1 and as2 mutants formed abaxialized filamentous leaves. Berberine, an isoquinoline alkaloid compound naturally produced in various plant sources, has a growth inhibitory effect on plants that do not produce berberine. We further showed that transcript levels of meristem-specific class 1 KNOX homeobox genes and abaxial determinant genes were increased in berberine-treated as1 and as2. Berberine treated plants carrying double mutations of AS2 and the large subunit ribosomal protein gene RPL5B showed more severe defects in polarity than did the as2 single mutant plants. We suggest that berberine inhibits (a) factor(s) that might be required for leaf adaxial cell differentiation through a pathway independent of AS1 and AS2. Multiple pathways might play important roles in the formation of flat symmetric leaves.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Berberine/pharmacology , Plant Leaves/drug effects , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Berberine/chemistry , Gene Expression Regulation, Plant/drug effects , Mesoporphyrins/pharmacology , Microarray Analysis , Molecular Structure , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Seedlings/drug effects , Transcription Factors/genetics
8.
J Biosci Bioeng ; 114(5): 570-5, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22721688

ABSTRACT

The G-quadruplex is one of the most frequently studied secondary DNA structures and consists of 4 guanine residues that interact through Watson-Crick and Hoogsteen pairing. The G-quadruplex formation is thought to be a molecular switch for gene expression. Genome-wide analyses of G-quadruplexes have been published for many species; however, only one genome-wide analysis of G-quadruplexes in plants has been reported. Here, we propose a new approach involving a two-step procedure for identifying G-quadruplex-forming sequences (potential G4 DNA motif regions: G4MRs) and classifying positional relationships between G4MRs and genes. By using this approach, we exhaustively searched for G4MRs in the whole genomes of 8 species: Arabidopsis thaliana, Oryza sativa subsp. japonica, Populus trichocarpa, Vitis vinifera, Homo sapiens, Danio rerio, Drosophila melanogaster, and Caenorhabditis elegans. We classified genes on the basis of their positional relationships to their proximal G4MRs. We identified novel rules for G4MRs in plants, such as G4MR-enrichment in the template strands at transcription start sites (TSSs). Next, we focused on the template strands of TSSs and conducted gene ontology (GO) analysis of genes proximal to G4MRs. We identified GO terms such as chloroplast and nucleosome (or histone) in O. sativa. Although these terms were strongly associated in O. sativa, weak associations were identified in other plants. These results will be helpful for elucidating the functional roles of G4 DNA.


Subject(s)
DNA, Plant/chemistry , G-Quadruplexes , Animals , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Genomics , Humans , Nucleotide Motifs , Sequence Analysis, DNA , Transcription Initiation Site
9.
FEBS Lett ; 584(6): 1181-6, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20153325

ABSTRACT

We have previously demonstrated that RNA interference-mediated suppression of xanthine dehydrogenase (XDH), the rate-limiting enzyme in purine degradation, causes defects in the normal growth and development of Arabidopsis thaliana. Here, we investigated a possible role for XDH in drought tolerance, since this enzyme is also implicated in plant stress responses and acclimatization. When XDH-suppressed lines were subjected to drought stress, plant growth was markedly reduced in conjunction with significantly enhanced cell death and H(2)O(2) accumulation. This drought-hypersensitive phenotype was reversed by pretreatment with exogenous uric acid, the catalytic product of XDH. These results suggest that fully functional purine metabolism plays a role in the Arabidopsis drought acclimatization.


Subject(s)
Acclimatization/genetics , Arabidopsis/genetics , Droughts , Purines/metabolism , RNA Interference/physiology , Xanthine Dehydrogenase/genetics , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Death/genetics , Down-Regulation , Gene Expression Regulation, Enzymologic , Hydrogen Peroxide/metabolism , Plants, Genetically Modified , Stress, Physiological/genetics , Uric Acid/metabolism , Xanthine Dehydrogenase/metabolism
10.
Biochem Biophys Res Commun ; 377(3): 857-61, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-18950603

ABSTRACT

Atmospheric nitrogen dioxide (NO(2)) is an environmental oxidant that is removed through direct uptake by foliage, but plant responses to this highly reactive gas are not well understood at the molecular level. From NO(2)-exposed leaves of a woody azalea (Rhododendron mucronatum), we cloned two cDNAs (RmGLP1 and RmGLP2) for germin-like proteins (GLPs), a group of ubiquitous plant proteins that have been implicated in various plant physiological and developmental processes. Quantitative analysis of mRNA expression, together with immunoblotting data, showed that foliar exposure to NO(2) caused a robust induction of these GLP-encoding genes. When produced in tobacco cell culture, recombinant RmGLP2 was secreted into the apoplast, where it exhibited superoxide dismutase activity. RmGLP1 and RmGLP2 represent the first examples of plant genes that are responsive to airborne NO(2). These enzymes might have a potential role in extracellular defense mechanisms through attenuation of interactions between reactive nitrogen and oxygen species.


Subject(s)
Glycoproteins/metabolism , Nitrogen Dioxide/metabolism , Oxidants, Photochemical/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Rhododendron/metabolism , Amino Acid Sequence , Atmosphere , Cells, Cultured , Cloning, Molecular , DNA, Complementary/genetics , Glycoproteins/genetics , Molecular Sequence Data , Nitrogen Dioxide/pharmacology , Oxidants, Photochemical/pharmacology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Proteins/genetics , Rhododendron/drug effects , Rhododendron/genetics , Nicotiana/genetics
11.
Plant Cell Physiol ; 48(10): 1484-95, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17872919

ABSTRACT

Xanthine dehydrogenase (XDH) is a ubiquitous enzyme involved in purine metabolism which catalyzes the oxidation of hypoxanthine and xanthine to uric acid. Although the essential role of XDH is well documented in the nitrogen-fixing nodules of leguminous plants, the physiological importance of this enzyme remains uncertain in non-leguminous species such as Arabidopsis. To evaluate the impact of an XDH deficiency on whole-plant physiology and development in Arabidopsis, RNA interference (RNAi) was used to generate transgenic lines of this species in which AtXDH1 and AtXDH2, the two paralogous genes for XDH in this plant, were silenced simultaneously. The nearly complete reduction in the total XDH protein levels caused by this gene silencing resulted in the dramatic overaccumulation of xanthine and a retarded growth phenotype in which fruit development and seed fertility were also affected. A less severe silencing of XDH did not cause these growth abnormalities. The impaired growth phenotype was mimicked by treating wild-type plants with the XDH inhibitor allopurinol, and was reversed in the RNAi transgenic lines by exogenous supplementation of uric acid. Inactivation of XDH is also associated with precocious senescence in mature leaves displaying accelerated chlorophyll breakdown and by the early induction of senescence-related genes and enzyme markers. In contrast, the XDH protein levels increase with the aging of the wild-type leaves, supporting the physiological relevance of the function of this enzyme in leaf senescence. Our current results thus indicate that XDH functions in various aspects of plant growth and development.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/growth & development , Plant Leaves/metabolism , RNA Interference , Xanthine Dehydrogenase/deficiency , Xanthine Dehydrogenase/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Phenotype , Plants, Genetically Modified , Reproduction , Uric Acid/pharmacology , Xanthine Dehydrogenase/metabolism
12.
Biosci Biotechnol Biochem ; 70(2): 525-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16495673

ABSTRACT

We investigated the degradation pathways and kinetics of 2,4-dichlorophenol (DCP) by an endemic soil fungus, Mortierella sp. (Zygomycetes). Mortierella sp. degraded 32% of added DCP (final concentration, 250 microM) within 1 h. We identified four aromatic metabolites and found two DCP degradation pathways (a hydroxylation pathway and a dechlorination pathway). This is the first report of a dechlorination pathway in Zygomycetes.


Subject(s)
Chlorophenols/metabolism , Mortierella/metabolism , Soil Microbiology , Chlorophenols/chemistry , Kinetics , Mass Spectrometry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...