Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 28(8): 917-20, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24623696

ABSTRACT

RATIONALE: Ar gas cluster ion beam secondary ion mass spectrometry (Ar-GCIB SIMS) has been developed as one of the most powerful tools used for analyzing complex biological materials because of its distinctively high secondary ion yield of large organic molecules. However, for the practical analysis of minor components in complex biological materials, the sensitivity of the technique is still insufficient. METHODS: The detection limits of our original Ar-GCIB SIMS apparatus were investigated by measuring lipid compound samples in positive ion mode. The samples were mixtures of 1,2-distearoyl-sn-glycero-3-phosphocholine (C44 H88 NO8 P, DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (C40 H80 NO8 P, DPPC). The primary ions were accelerated with 10 keV and the mean cluster size was 1500. The secondary [M+H](+) ions emitted from the sample were analyzed using an orthogonal acceleration time-of-flight mass spectrometer (oa-TOF-MS). In addition, the isotope abundance ratio and the ratio of the [M+H](+) ion signal to the fragment ion signal acquired with Ar-GCIB SIMS were compared with those obtained with conventional Bi cluster SIMS. RESULTS: Secondary [M+H](+) ions and some characteristic fragment ions were clearly observed with high quantitative accuracy in the mass spectra acquired with Ar-GCIB SIMS. The results were clearly better than those obtained with conventional Bi cluster SIMS. CONCLUSIONS: The detection limit of Ar-GCIB SIMS was found to be below 0.1% and was much lower than that of conventional Bi cluster SIMS because of the high [M+H](+) ion yield and the low background. The results suggested that the new Ar-GCIB SIMS apparatus has the capability to acquire valuable information on complex biological materials.


Subject(s)
Argon/chemistry , Spectrometry, Mass, Secondary Ion/methods , 1,2-Dipalmitoylphosphatidylcholine/analysis , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Ions/analysis , Ions/chemistry , Limit of Detection , Models, Chemical
2.
Rapid Commun Mass Spectrom ; 27(13): 1490-6, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23722683

ABSTRACT

RATIONALE: The analysis of organic and biological substances by secondary ion mass spectrometry (SIMS) has greatly benefited from the use of cluster ions as primary bombarding species. Thereby, depth profiling and three-dimensional (3D) imaging of such systems became feasible. Large Ar(n)(+) cluster ions may constitute a further improvement in this direction. METHODS: To explore this option, large Ar(n)(+) cluster ions (with n ~1500 Ar atoms per cluster) were used to investigate the emission of positive secondary ions from two peptide specimens (angiotensin I and bradykinin) by orthogonal time-of-flight SIMS using bombarding energies 6, 10 and 14 keV. RESULTS: For both peptides, the protonated molecular ion is observed in the mass spectra. In addition, distinct fragmentation patterns were observed; these indicate that fragment ions under Ar cluster irradiation form primarily via cleavage of bonds along the peptide backbone whereas the rapture of side chains occurs much less frequently. These features appear to be similar to low-energy collision-induced dissociation pathways. CONCLUSIONS: Tentatively, these findings can then be ascribed to the concerted action of the large number of Ar atoms in the impact zone of cluster at the surface: these low-energy Ar species (with an average energy of few eV) may effect the cleavage of the peptide bonds and lead, eventually, to the emission of the fragment ions.


Subject(s)
Angiotensin I/chemistry , Argon/chemistry , Bradykinin/chemistry , Spectrometry, Mass, Secondary Ion/methods , Ions/chemistry , Molecular Structure , Spectrometry, Mass, Secondary Ion/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...