Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(44): 13577-13583, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36279511

ABSTRACT

Despite the popular use of citrate for the reduction of silver ions, this process suffers from slow crystal growth and broad size distribution. The rapid and effective synthesis of highly concentrated and stable spherical silver nanoparticles (AgNPs) confined in the surfactant-rich phase of thermoresponsive 3-(alkyldimethylammonio)-propyl sulfate surfactants obtained after reaction with citrate ions at high temperature is described. The present approach using the zwitterionic surfactant offers an alternative rapid approach for production of AgNPs and an in situ phase separation step that serves to "extract" and concentrate the AgNPs in the surfactant-rich phase. Almost all (synthetic yield 99.9%, extraction efficiency 98.6%) of the synthesized AgNPs with a diameter of 21.0 ± 2.5 nm were incorporated into the phase-separated surfactant-rich phase at pH 11, and the capacity (maximum concentration) was 3.4 × 1013 particles/mL. The AgNPs were stable upon long-term storage (at least 3 months).


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Surface-Active Agents , Plant Extracts/chemistry , Citrates
2.
Langmuir ; 37(36): 10702-10707, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34464146

ABSTRACT

Urchin-shaped gold nanoparticles (AuNUs) are anisotropic nanomaterials with unique chemical and physical properties of interest for a variety of applications. However, synthesizing AuNUs with controlled sizes and shapes remains challenging. We demonstrate that a combination of sodium borohydride (NaBH4) and ascorbic acid (AA) as reducing agents can produce an aqueous dispersion of AuNUs after just 9 min at room temperature (25 °C). The AuNUs were size- and shape-controlled using a molar ratio for NaBH4/AA/HAuCl4 = 1:1:1 at pH 3. The added aurate was almost entirely (98.8%) consumed in the formation of AuNUs. The resultant AuNU concentration was 1.1 × 1010 particles/mL. The diameters observed in transmission electron microscopy were 145.1 ± 37.4 nm. The AuNUs had an average of 12 spikes and an average volume of 3.7 × 105 nm3. The partition volume between the spikes and the core of particles was 3:2. The AuNUs had a pink color and exhibited an absorption wavelength maximum at 540 nm. It is assumed that the AuNUs originate from icosahedral seeds and urchin shapes emerge from connecting smaller-sized seeds and larger-sized core particles.


Subject(s)
Gold , Metal Nanoparticles , Ascorbic Acid , Borohydrides , Reducing Agents
3.
Langmuir ; 36(26): 7456-7462, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32539405

ABSTRACT

Calcium sulfate nanorods (CS-NRs) are valuable materials utilized in various applications, particularly in the medical field. In this work, the size-controlled synthesis of CS-NRs was carried out on the basis of the micelle-mediated phase separation phenomenon. A nonionic surfactant, Triton X-114, was employed for the thermoresponsive phase separation of a homogeneous solution to a surfactant-rich phase. Whereas each specific ion, Ca2+ and SO42-, was difficult to individually extract when present at concentrations less than their equilibrium concentration (solubility product constant, Ksp), the synthesized CS microrods (CS-µRs) were extracted into the surfactant-rich phase (enrichment factor = ca. 50). The presence of nitric acid increased the size of the materials up to 6707 ± 3488 nm on the long side and 87 ± 37 nm on the short side. The addition of silver nanoparticles (Ag-NPs) to the reaction mixture led to the formation of much smaller products, i.e., uniform CS-NRs whose sizes were in the range of 89 ± 15 nm (long side) and 25 ± 4 nm (short side). The size of the extracted Ag-NPs and CS-NRs decreased with an increase in added Ag-NP concentration until their microscopic observation became difficult. The factors (such as additive concentration, pH, temperature) affecting size control were evaluated.

4.
RSC Adv ; 10(56): 34161-34166, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519063

ABSTRACT

The effective synthesis of highly concentrated and stable spherical silver nanoparticles (Ag-NPs) enclosed within microdomains formed by the Ag-NP induced self-assembly of zwitterionic surfactants is described. In this paper, the rapid and efficient synthesis of dispersed and stable Ag-NPs in zwitterionic surfactants, such as 3-(nonyldimethylammonio)- or 3-(decyldimethyl-ammonio)-propyl sulfate (C9- or C10-APSO4) that self-assemble in the presence of the Ag-NPs to form microdomains akin to microemulsions (ME) without the need of any organic solvent, co-surfactant or polymer is presented. Essentially all (>99.9%) of the synthesized Ag-NPs (TEM diameter 16.8 ± 4.3 nm) were incorporated and dispersed within the ME microdomains (213.5 ± 48.0 nm). A mechanism for formation of ME and its enclosing of the Ag-NPs in the ME is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...