Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(8): 5937-5949, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37128763

ABSTRACT

We report a unique phototunable cell killing technique using diarylethene molecules as photo-isomerizing-molecular switches. These molecules were delivered to DNA in the cell nucleus due to closed-form generated by UV light, and then blue light triggered cell killing. A UV light irradiation switches the open form, having no DNA intercalation activity, to the closed form to induce intercalation in DNA. This isomer, thus prepared ready for the action, exerts photocytotoxicity upon the subsequent blue light irradiation. Molecular biological analysis clarifies that photocytotoxicity is due to DNA double-strand breaks. Since cell death is observed only when irradiated with light where both the open- and closed-ring isomers have absorption, the possible mechanism of cell death is assumed to be due to the repeated photocyclization and photocycloreversion reactions of the diarylethene molecules, which induce irreparable damage to DNA. This unique photo-controllable action in a cell system can provide the basis of a novel scheme of phototherapy.


Subject(s)
Ethylenes , Light , Molecular Structure , Isomerism , Cell Death
2.
Org Biomol Chem ; 20(15): 3211-3217, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35352079

ABSTRACT

Photopharmacology has been attracting attention for the development of drugs with fewer side effects and lower toxicity by introducing a photoswitch structure in the drug and controlling its spatiotemporal effects by light irradiation. Ideally, to achieve precise spatiotemporal control, it is desirable to use photoresponsive molecules that act as anticancer agents based on molecular switch mechanisms at the molecular level. However, very few reports on photoinduced cytotoxicity have used photoresponsive molecules with simple structures. Here, we investigate the photoinduced cytotoxicity of twelve diarylethene derivatives having thiazole or pyridine rings in their molecules and evaluate them in terms of molecular structure and size. Our results provide insight into molecular design principles for diarylethene with a simple structure toward achieving precise control based on molecular-level switch mechanisms.


Subject(s)
Ethylenes , Ethylenes/chemistry , Ethylenes/pharmacology , Molecular Structure
3.
Beilstein J Org Chem ; 15: 2204-2212, 2019.
Article in English | MEDLINE | ID: mdl-31598177

ABSTRACT

Background: Diarylethenes are well-known photochromic compounds, which undergo cyclization and cycloreversion reactions between open- and closed-ring isomers. Recently, diarylethene derivatives with photoswitchable fluorescent properties were prepared. They are applicable for fluorescence imaging including bio-imaging. On the other hand, a new system called "excited state intramolecular proton transfer (ESIPT)" is reported. In the system, absorption and emission bands are largely separated due to the proton transfer, hence it showed strong fluorescence even in the crystalline state. We aimed to construct the photochromic system incorporating the ESIPT mechanism. Results: A diarylethene incorporating a fluorescent moiety that exhibit ESIPT behavior was prepared. The ESIPT is one of the examples which express the mechanisms of aggregation-induced emission (AIE). This compound emits orange fluorescence with a large Stokes shift derived from ESIPT in aprotic solvents such as THF or hexane, while it exhibits only a photochromic reaction in protic solvents such as methanol. In addition, it shows turn-off type fluorescence switching in an aprotic solvent and in crystals. The fluorescence is quenched as the content of closed-ring isomers increases upon UV light irradiation. Conclusions: A diarylethene containing an ESIPT functional group was prepared. It showed fluorescent turn-off behavior during photochromism in aprotic solvents as well as in crystalline state upon UV light irradiation. Furthermore, it showed AIE in THF/water mixtures with blue-shift of the emission.

4.
Chemistry ; 25(33): 7874-7880, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30934138

ABSTRACT

The photoresponse of diarylethene crystals is found to depend on the intensity of UV light, that is, photoinduced bending is switched to photosalient phenomena by increasing the light intensity. The change in the size of the crystal unit cell upon UV irradiation is larger for asymmetric diarylethenes with thiazole and thiophene rings than that for the corresponding symmetric diarylethenes. As a result, the crystals of an asymmetric diarylethene show much more drastic photosalient effects than those of the corresponding symmetric diarylethene crystals upon UV irradiation. It is also found that the crystals of diarylethene, which have not previously been reported to exhibit a photosalient effect, show photosalient phenomena upon irradiation with strong UV light. Furthermore, the dependence of photosalient phenomena on the size and shape of the crystals is reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...