Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37185557

ABSTRACT

Biofuel cells (BFCs) with enzymatic electrocatalysts have attracted significant attention, especially as power sources for wearable and implantable devices; however, the applications of BFCs are limited owing to the limited O2 supply. This can be addressed by using air-diffusion-type bilirubin oxidase (BOD) cathodes, and thus the further development of the hierarchical structure of porous electrodes with highly effective specific surface areas is critical. In this study, a porous layer of gold is deposited over magnesium-oxide-templated carbon (MgOC) to form BOD-based biocathodes for the oxygen reduction reaction (ORR). Porous gold structures are constructed via electrochemical deposition of gold via dynamic hydrogen bubble templating (DHBT). Hydrogen bubbles used as a template and controlled by the Coulomb number yield a porous gold structure during the electrochemical deposition process. The current density of the ORR catalyzed by BOD without a redox mediator on the gold-modified MgOC electrode was 1.3 times higher than that of the ORR on the MgOC electrode. Furthermore, the gold-deposited electrodes were modified with aromatic thiols containing negatively charged functional groups to improve the orientation of BOD on the electrode surface to facilitate efficient electron transfer at the heterogeneous surface, thereby achieving an ORR current of 12 mA cm-2 at pH 5 and 25 °C. These results suggest that DHBT is an efficient method for the fabrication of nanostructured electrodes that promote direct electron transfer with oxidoreductase enzymes.


Subject(s)
Bioelectric Energy Sources , Carbon , Carbon/chemistry , Gold/chemistry , Oxygen/chemistry , Electrodes , Hydrogen , Enzymes, Immobilized/chemistry
2.
Langmuir ; 34(40): 11913-11924, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30122050

ABSTRACT

The spontaneous growth of helical fibers of amphiphilic diamide derivatives containing hydrocarbons with asymmetric carbon centers in their constituent hydrocarbons was investigated. 12-Hydroxystearic acid and a gemini-type surfactant obtained by the bimolecular condensation of this compound with hexamethylenediamine both impart thixotropic ability to a solvent. Although this thixotropic behavior is based on the growth of hierarchical crystalline nanofibers in the solvents, the degree of fiber growth itself was not the origin of the thixotropy. In this study, it has adopted the methods of the Langmuir monolayer and Langmuir-Blodgett films as technique to selectively and individually evaluate the behavior of 12-hydroxyl stearyl and/or stearyl chains themselves. The ability to impart thixotropy to the solvent via fiber organization was related to the intermolecular hydrogen bonding between the added amphiphiles. Additionally, homogeneous right-handed helical fibers were formed in the spin-cast films of the diamide derivatives, and a positive Cotton effect was observed in their circular dichroism spectra. It is suggested that fibers that do not form helical arrangements cannot impart sufficient thixotropy to the solvent even when extensive fiber growth is achieved, and the structure-dependent development of chirality is the driving force. In addition, to further the development of highly functional thixotropic agents, a trefoil-like triamide derivative containing three chains was synthesized. By using this molecule, solvent gelation occurred at 78% as an addition to the diamide case, and a supramolecular assembly was formed in the corresponding two-dimensional film.

3.
J Colloid Interface Sci ; 498: 64-75, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28319842

ABSTRACT

The formation of a nanofiber morphology at the mesoscopic scale and the molecular-level packing of a gemini-type amphiphilic diamide derivative with two hydrocarbons were investigated from two perspectives. First, it was confirmed that a diamide derivative with two hydrocarbons forms crystalline nanofibers even in a monomolecular layer. The height, thickness, and lattice spacing of the two-dimensional orthorhombic system of this crystalline nanofiber in the monolayer of a diamide derivative with two hydrocarbons are 5, 30, and 0.4nm, respectively. Next, it was determined that the fibrous growth of the diamide derivative with two hydrocarbons, which contributes to the thixotropic ability, can be achieved by the addition of a quaternary ammonium cation with long chains, modified with montmorillonite. Here, the interlayer spacing was about 3.8nm for the organo-modified montmorillonite and was consistent with the layer spacing of the diamide derivative having two hydrocarbons. The surface pressure-area isotherms of the mixed monolayers suggest that there is miscibility between these materials. From "the affinity due to the van der Waals interaction between the terminal groups of the alkyl chains" and the "similarity of layer spacing," epitaxial growth is expected.

SELECTION OF CITATIONS
SEARCH DETAIL
...