Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 269(24): 16810-20, 1994 Jun 17.
Article in English | MEDLINE | ID: mdl-7911469

ABSTRACT

The prion protein (PrP) displays some unusual features in its biogenesis. In cell-free systems it can be synthesized as either an integral transmembrane protein spanning the membrane twice, with both amino and carboxyl domains in the lumen of the endoplasmic reticulum, or as a fully translocated polypeptide. A charged, extracytoplasmic region, termed the Stop Transfer Effector (STE) sequence, has been shown to direct the nascent translocating chain to stop at the adjoining hydrophobic domain to generate the first membrane-spanning region (TM1). However, the determinants of the second translocation event in the biogenesis of the transmembrane form have not been identified previously. Moreover, the relationship of transmembrane and fully translocated forms of PrP has not been well understood. Here, we report progress in resolving both of these issues. Using protein chimeras in cell-free translation systems and Xenopus oocytes, we identify the sequence which directs nascent PrP to span the membrane a second time, with its carboxyl-terminal domain in the endoplasmic reticulum lumen. Surprisingly, PrP carboxyl-terminal domain translocation does not appear to be directed by an internal signal or signal-anchor sequence located downstream of TM1, as would have been expected from studies of other multispanning membrane proteins. Rather, carboxyl-terminal domain translocation appears to be another consequence of the action of STE-TM1, that is, the same sequence responsible for generating the first membrane-spanning region. Studies of an STE-TM1-containing protein chimera in Xenopus oocytes demonstrate that most of these chains upon completion of their translation, initially span the membrane twice, with a topology similar to that of transmembrane PrP, but are carbonate-extractable. These chains have the transmembrane orientation only transiently and chase into a fully translocated form. These results support a model in which a metastable "transmembrane" intermediate, residing within the aqueous environment of the translocation channel, can be converted into either the integrated transmembrane or the fully translocated form of PrP, perhaps directed by trans-acting factor (s). Such a model may explain why stable the transmembrane isoform of PrP has not been observed in normal cells and how nascent PrP might be directed to alternate pathways of folding.


Subject(s)
Prions/biosynthesis , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Antibodies , Cattle , Cell-Free System , Female , Globins/biosynthesis , Globins/immunology , Humans , Models, Structural , Molecular Sequence Data , Oocytes/metabolism , Peptides/chemical synthesis , Peptides/immunology , Plasmids , PrPSc Proteins , Prions/chemistry , Prolactin/biosynthesis , Protein Conformation , Protein Structure, Secondary , Rabbits/immunology , Recombinant Fusion Proteins/biosynthesis , Transcription, Genetic , Xenopus
2.
J Biol Chem ; 269(10): 7617-22, 1994 Mar 11.
Article in English | MEDLINE | ID: mdl-8125986

ABSTRACT

Signal, stop transfer, and signal-anchor sequences direct a nascent polypeptide to a single topology with respect to the membrane of the endoplasmic reticulum. However, other types of sequences direct nascent proteins, either transiently or permanently, to more than one topologic form. Pause transfer sequences direct nascent apolipoprotein B to pause during its translocation, resulting in nonintegrated, transmembrane intermediates that become fully translocated over time. The stop transfer effector sequence (STE) directs the nascent prion protein either to integrate at the hydrophobic domain which immediately follows (TM1) or to become fully translocated, in a manner dependent on cytosolic factors. Although the action of pause transfer sequences has been dissected into stop and restart steps, the mechanism of STE action is unknown. Using chimeric proteins expressed in vitro, we show that STE, independent of TM1, acts as a pause transfer sequence. We also demonstrate that translocational pausing at STE is a common step preceding either complete translocation or integration into the membrane of a chimeric protein containing STE and TM1. These findings have implications for the role of pausing in the biogenesis of both secretory and membrane proteins.


Subject(s)
Membrane Proteins/biosynthesis , Protein Biosynthesis , Amino Acid Sequence , Biological Transport , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Sequence Data , Proteins/chemistry , Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...