Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biorheology ; 54(2-4): 51-65, 2018.
Article in English | MEDLINE | ID: mdl-29355112

ABSTRACT

BACKGROUND: Prediction of thrombus formation at intact arterial walls under low shear flow conditions is clinically important particularly for better prognoses of embolisation in cerebral aneurysms. Although a new mathematical model for this purpose is necessary, little quantitative information has been known about platelet adhesion to intact endothelial cells. OBJECTIVE: The objective of this study is to measure the number of platelets adhering to intact endothelial cells with a focus upon the influence of the shear rate. METHODS: Endothelial cells disseminated in µ-slides were exposed to swine whole blood at different shear rates. Adenosine diphosphate (ADP) was used as an agonist. Adherent platelets were counted by means of scanning electron microscopy. RESULTS: At an ADP concentration of 1 µM, 20.8 ± 3.1 platelets per 900 µm2 were observed after 30-minute perfusion at a shear rate of 0.8 s-1 whereas only 3.0 ± 1.4 per 900 µm2 at 16.8 s-1. CONCLUSIONS: The number of adherent platelets is determined by a balance between the shear and the degree of stimulation by the agonist. At an ADP concentration of 1 µM, a limit to the shear rate at which platelets can adhere to intact endothelial cells is considered to be slightly higher than 16.8 s-1.


Subject(s)
Blood Platelets/physiology , Endothelial Cells/physiology , Platelet Adhesiveness , Animals , Blood Platelets/ultrastructure , Cell Count , Cells, Cultured , Equipment Design , Female , Microscopy, Electron, Scanning , Rheology/instrumentation , Rheology/methods , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...