Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172241, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582119

ABSTRACT

Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. These predictions allow exploring forestry practices that maximize carbon sequestration by forests, including wood production. Forest inventories based on field measurements are considered the most accurate method for estimating forest carbon stocks. Japan's national forest inventories (NFIs) provide stand volumes for all Japanese forests, and estimates from direct field observations (m-NFIs) are the most reliable. Therefore, using the m-NFI from 2009 to 2013, we selected four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi and presented their forest age-carbon density function. We then estimated changes in forest carbon stocks from the past to the present using the functions. Next, we investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. Our results indicate that, for all four forest types, the estimates of growth rates and past forest carbon stocks in this study were higher than those considered until now. The predicted carbon sequestration from 2011 to 2061, assuming that 100 % of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100 % afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit a high carbon sequestration potential under the premise of active management, harvesting, afforestation, and prolonging the residence time of stored carbon in wood products with technology development.


Subject(s)
Carbon Sequestration , Carbon , Cryptomeria , Forestry , Forests , Trees , Japan , Carbon/analysis , Larix/growth & development , Pinus/growth & development , Chamaecyparis , Environmental Monitoring
2.
Plant Environ Interact ; 3(2): 60-73, 2022 Apr.
Article in English | MEDLINE | ID: mdl-37284007

ABSTRACT

Fine root phenology is controlled by complex mechanisms associated with aboveground phenological events and environmental conditions, and therefore, elucidating fine root responses to changing environments remains difficult without considering the dynamics within and among years. This study evaluated the response of fine root growth at variable time scales to the surrounding environments of soil temperature and moisture at ecosystem scales. Optical scanners were used to measure fine root production over 4 years in two forests dominated by either cypress or deciduous oak trees. Correlations between fine root production and soil temperature and moisture were analyzed using the state-space model. Fine root phenology varied among years in the cypress stand and showed stable growth patterns in the oak stand as production peaked in spring every year. Soil temperature had a dominant influence on fine root production, while soil moisture enhanced fine root growth especially in the oak stand. Fine root responses to both soil temperature and moisture peaked during the early growing season, indicating its own temperature hysteresis that means different responses under same temperature within a year. The time-varying response of fine root growth to external factors is a key perspective to explain fine root growth mechanisms, and whether evergreen or deciduous habits differentiates the fine root phenology due to a linkage between above- and belowground resource dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...