Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Environ ; 27(3): 306-15, 2012.
Article in English | MEDLINE | ID: mdl-22452844

ABSTRACT

Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere.


Subject(s)
Bradyrhizobium/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Bacterial Proteins/genetics , Base Composition , Bradyrhizobium/isolation & purification , Bradyrhizobium/physiology , Metabolic Networks and Pathways/genetics , Molecular Sequence Data , Open Reading Frames , RNA, Untranslated/genetics , Soil Microbiology , Symbiosis , Synteny
2.
Bioresour Technol ; 109: 300-3, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21906932

ABSTRACT

Aiming at herbicide-assisted cultivation of Botryococcus braunii for prevention of algal contamination, herbicide-tolerant mutant lines of B. braunii were established for two widely used herbicides, methyl viologen and glufosinate. Some established mutant lines exhibited vigorous oil production and growth in herbicide-containing media. Because the two herbicides were effective in controlling the growth of the algal competitors of B. braunii, these mutants can be directly used in industrial attempts for cost-effective oil production in herbicide-assisted non-axenic systems. This is the first report of mutagenesis of B. braunii.


Subject(s)
Chlorophyta/drug effects , Chlorophyta/genetics , Herbicide Resistance/genetics , Herbicides/toxicity , Mutation/genetics , Chlorophyta/growth & development , Mutagenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...