Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 565: 50-56, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34090210

ABSTRACT

Fluorescence polarization microscopy (FPM) can visualize the dipole orientation of fluorescent molecules and has been used for analyzing architectural dynamics of biomolecules including cytoskeletal proteins. To monitor the orientation of target molecules by FPM, target molecules need to be labeled with fluorophores in a sterically constrained manner, so that the fluorophores do not freely rotate. Recently, a versatile probe for such labeling using fluorescent proteins, POLArIS (Probe for Orientation and Localization Assessment, recognizing specific Intracellular Structures of interest), was reported. POLArIS is a fusion protein consisting of a non-immunoglobulin-based recombinant binder Affimer and a green fluorescent protein (GFP), where the Affimer and GFP are rigidly connected to each other. POLArIS probe for molecules of interest can be developed through phage display screening of Affimer. This screening is followed by the rigid connection of fluorescent proteins to the selected Affimers. The Affimer-based POLArIS, however, cannot be used with animal immune libraries for selecting specific binder clones. In addition, multi-color FPM by POLArIS was not available due to the lack of color variations of POLArIS. In this study, we have developed new versions of POLArIS with nanobodies, which are compatible with animal immune libraries, and expanded color variations of POLArIS with cyan/green/yellow/red fluorescent proteins, enabling multi-color orientation imaging for multiple targets. Using nanobody-based POLArIS orientation probes, we performed two-color FPM of F-actin and vimentin in living cells. Furthermore, we made nanobody-based POLArIS probes that have different dipole orientations for adjusting the orientation of fluorescence polarization with respect to the target molecules. These nanobody-based POLArIS with options of colors and dipole orientations will enhance the performance of this probe for broader applications of fluorescence polarization imaging in living cells, tissues, and whole organisms.


Subject(s)
Color , Fluorescent Dyes/chemistry , Optical Imaging , Animals , Fluorescent Dyes/chemical synthesis , Humans , LLC-PK1 Cells , Swine , Tumor Cells, Cultured
2.
Microscopy (Oxf) ; 68(5): 359-368, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31264686

ABSTRACT

Fluorescence polarization microscopy, which can visualize both position and orientation of fluorescent molecules, is useful for analyzing architectural dynamics of proteins in vivo, especially that of cytoskeletal proteins such as actin. Fluorescent phalloidin conjugates and SiR-actin can be used as F-actin orientation probes for fluorescence polarization microscopy, but a lack of appropriate methods for their introduction to living specimens especially to tissues, embryos, and whole animals hampers their applications to image the orientation of F-actin. To solve this problem, we have developed genetically encoded F-actin orientation probes for fluorescence polarization microscopy. We rigidly connected circular permutated green fluorescent protein (GFP) to the N-terminal α-helix of actin-binding protein Lifeact or utrophin calponin homology domain (UtrCH), and normal mEGFP to the C-terminal α-helix of UtrCH. After evaluation of ensemble and single particle fluorescence polarization with the instantaneous FluoPolScope, one of the constructs turned out to be suitable for practical usage in live cell imaging. Our new, genetically encoded F-actin orientation probe, which has a similar property of an F-actin probe to conventional GFP-UtrCH, is expected to report the 3D architecture of the actin cytoskeleton with fluorescence polarization microscopy, paving the way for both the single molecular orientation imaging in cultured cells and the sub-optical resolution architectural analysis of F-actin networks analysis of F-actin in various living systems.


Subject(s)
Actins/chemistry , Fluorescence Polarization , Microscopy, Fluorescence , Molecular Probes , Staining and Labeling , Animals , Cell Line , Green Fluorescent Proteins/chemistry , HeLa Cells , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Microfilament Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...